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SOLUTION OF ADVECTION DIFFUSION EQUATIONS IN TWO
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HEXAGONAL GRIDS
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Abstract. We present a characteristic method for the solution of the tran-

sient advection diffusion equations in two space-dimensions. This method

uses Wachspress-type rational basis functions over hexagonal grids within the

framework of the Eulerian Lagrangian localized adjoint methods (ELLAM). It

therefore maintains the advantages of previous ELLAM schemes and generates

accurate numerical solutions even if large time steps are used in the simula-

tion. Numerical experiments are presented to illustrate the performance of this

method and to investigate its convergence numerically.
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1. Introduction

Advection-diffusion equations are a class of partial differential equations that
is mathematically important because they arise in many problems in Science and
Engineering. These equations are also important because they present serious com-
putational difficulties, especially when advection dominates the physical process.
Standard finite difference and finite element methods, which work well for many
other types of equations, generate solutions for this class of equations that exhibit
non-physical spurious oscillations and/or artificial numerical diffusion that smears
out sharp fronts of the solution where important chemistry and physics take place.

Many specialized methods have been developed which aim at resolving the diffi-
culties mentioned when applied to both linear and nonlinear problems. One large
class of methods, usually referred to as characteristic methods, makes use of the
hyperbolic nature of the governing equations. These methods incorporate Eulerian
grids with Lagrangian tracking along the characteristic curves to treat the advective
part of the equation [9, 13]. This treatment allows for larger time steps to be used in
the simulation. Moreover, it significantly reduces the time truncation errors when
compared to methods which rely only on Eulerian grids. However, these methods
have difficulty in conserving mass and in treating general boundary conditions.

The Eulerian Lagrangian localized adjoint method was developed by Celia, Rus-
sell, Herrera, and Ewing as an improved extension of characteristic methods which
maintains their advantages and enhances their performance by conserving mass
and treating general boundary conditions naturally in its formulation [6]. This first
ELLAM formulation was a finite element formulation for one-dimensional constant
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coefficient advection diffusion equations. The strong potential that this formula-
tion has shown, led to a rapid expansion in all aspects of this class of methods,
including the development of various finite element and finite volume formulations
for one and higher dimensional problems [1, 3, 10, 14, 26, 27]. Other formulations
were also developed including Eulerian-Lagrangian collocation methods [39, 40, 41],
and Eulerian Lagrangian discontinuous Galerkin methods [34, 35, 36, 37]. More-
over, convergence properties of the different ELLAM formulations were studied
and various optimal order convergence and uniform estimates were established
[19, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33].

ELLAM formulations developed for two-dimensional problems have mostly fol-
lowed the classical polynomial-based finite element approach; which is to discretize
the spatial domain into an assembly of triangular or quadrilateral elements and use
linear or higher polynomial interpolants as the test functions on each element and
the basis for the solution space [12]. However, due to the reliance on polynomial ba-
sis, other types of higher-order elements have not been extensively considered even
though such elements with large number of sides have been successfully used in a
number of applications in Engineering and other fields and have resulted in some
cases in better approximations than those obtained by triangular or quadrilateral
polynomial based standard finite element codes [7].

In this article we present a rational characteristic method for the solution of vari-
able coefficient advection diffusion equations within the framework of the Eulerian-
lagrangian localized adjoint methods. The algorithm is based on a discretization
of the spatial domain into a partition of regular hexagonal elements and uses
Wachspress-type rational test functions in the space-time domain defined by the
characteristics [18]. The derived method generates regularly structured systems
which can easily be solved numerically. Numerical experiments are presented to
illustrate the performance of the method developed.

2. Development of the Characteristic Schemes

We consider the following two-dimensional unsteady-state advection diffusion
equation

(1) (φ(x, t) u(x, t))t +∇ ·
(

v(x, t)u(x, t) −D(x, t)∇u(x, t)
)

= f(x, t)

where x = (x, y), ut = ∂u/∂t, ∇ = 〈∂/∂x, ∂/∂y〉, φ(x, t) is the retardation coef-
ficient, v(x, t) is the velocity field, D(x, t) is the diffusion/dispersion tensor, and
f(x, t) is a source/sink term. While the ELLAM method can be developed for any
bounded spatial domain which admits a quasi-uniform partition, for simplicity of
presentation we consider a spatial domain of the form Ω = [a, b] × [c, d]. To close
the system, we assume that an appropriate initial condition and any proper com-
bination of Dirichlet, Neumann, or flux boundary conditions are specified at the
inflow or outflow parts of the boundary.

2.1. Partition and Characteristic Tracking. Eulerian-Lagrangian localized
adjoint methods (ELLAM) have previously been developed using triangular and
quadrilateral discretizations of the domain [15, 28]. However, in this section we
consider a hexagonal discretization, which for simplicity of presentation, we take to
be a regular grid. The method uses a time-stepping algorithm, and so, we use the
temporal partition

(2) tn = n∆t, n = 0, ..., N with ∆t = T/N

for positive integer N and only focus on the current time interval (tn, tn+1].


