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Abstract. This paper is concerned with solving nonlinear monotone difference

schemes of the parabolic type. The monotone Jacobi and monotone Gauss–

Seidel methods are constructed. Convergence rates of the methods are com-

pared and estimated. The proposed methods are applied to solving nonlinear

singularly perturbed parabolic problems. Uniform convergence of the mono-

tone methods is proved. Numerical experiments complement the theoretical

results.
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1. Introduction

Many reaction-diffusion-convection-type problems in the chemical, physical and
engineering sciences are described by nonlinear parabolic equations. The parabolic
problem under consideration is in the form

(1)
∂u

∂t
− Lu+ f(x, t, u) = 0, (x, t) ∈ ω × (0, T ],

u(x, t) = g(x, t), (x, t) ∈ ∂ω × (0, T ], u(x, 0) = u0(x), x ∈ ω,

where ω is a connected bounded domain in R
κ (κ = 1, 2, . . .) with boundary ∂ω.

Lu is given by

Lu =

κ
∑

ν=1

∂

∂xν

(

kν(x, t)
∂u

∂xν

)

+

κ
∑

ν=1

vν(x, t)
∂u

∂xν
,

where the coefficients of the differential operator are smooth and kν > 0, ν =
1, . . . , κ, in ω. It is also assumed that the functions f and g are smooth in their
respective domains.

In the study of numerical methods for nonlinear parabolic problems, the two
major points to be developed are: i) constructing convergent nonlinear difference
schemes and ii) computing solutions of nonlinear discrete problems. A major point
about the nonlinear difference schemes is to obtain reliable and efficient computa-
tional methods for computing the solution. The reliability of iterative techniques for
solving nonlinear difference schemes can be essentially improved by using compo-
nentwise monotone globally convergent iterations. Such methods can be controlled
every time. A fruitful method for the treatment of these nonlinear schemes is the
method of upper and lower solutions and its associated monotone iterations [7].
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Since an initial iteration in the monotone iterative method is either an upper or
lower solution, which can be constructed directly from the difference equation with-
out any knowledge of the exact solution, this method simplifies the search for the
initial iteration as is often required in the Newton method. In the context of solving
systems of nonlinear equations, the monotone iterative method belongs to the class
of methods based on convergence under partial ordering (see Chapter 13 in [7] for
details).

The purpose of this paper is to extend the monotone iterative method from [4]
to monotone relaxation methods of Jacobi- and Gauss–Seidel type iterations for
solving nonlinear monotone difference schemes in the canonical form and to apply
the monotone methods to nonlinear singularly perturbed equations of the parabolic
type. Convergence rates of these relaxation methods are compared and estimated.

The structure of the paper is as follows. In Section 2, we present the nonlinear
monotone difference scheme in the canonical form and formulate the maximum
principle. In Section 3, we construct the monotone Jacobi and monotone Gauss–
Seidel methods, prove monotone convergence of the methods and compare their
convergence rates. Section 4 is devoted to estimation of convergence rates of the
monotone methods. In the final Section 5, the monotone methods are applied
to solving nonlinear singularly perturbed parabolic problems. We prove that on
layer-adapted meshes the monotone methods converge uniformly in a perturbation
parameter. Numerical experiments complement the theoretical results.

2. The nonlinear difference scheme

On ω and [0, T ], we introduce meshes ωh and ωτ , respectively. For simplicity,
we assume that the mesh ωτ is uniform with the time step τ . For a mesh function
U(p, t), (p, t) ∈ ωh × ωτ , consider the nonlinear implicit difference scheme in the
canonical form [9]

(2) LU(p, t) + f(p, t, U)− τ−1U(p, t− τ) = 0, (p, t) ∈ ωh × (ωτ \ 0),

U(p, 0) = u0(p), p ∈ ωh, U(p, t) = g(p, t), (p, t) ∈ ∂ωh × (ωτ \ 0),

where ∂ωh is the boundary of ωh, and the difference operator L is defined by

LU(p, t) ≡ LhU(p, t) + τ−1U(p, t),

LhU(p, t) ≡ d(p, t)U(p, t)−
∑

p′∈σ′(p)

e(p′, t)U(p′, t).

Here σ′(p) = σ(p) \ {p}, σ(p) is a stencil of the scheme at an interior mesh point
p ∈ ωh.

On each time level t, we make the following assumptions on the coefficients of
the spatial operator Lh :

(3) d(p, t) > 0, e(p, t) ≥ 0, p ∈ ωh,

d(p, t)−
∑

p′∈σ′(p)

e(p′, t) ≥ 0, p′ ∈ σ′(p).

We also assume that the mesh ωh is connected. It means that for two interior
mesh points p̃ and p̂, there exists a finite set of interior mesh points {p1, p2, . . . , ps}
such that

(4) p1 ∈ σ′(p̃), p2 ∈ σ′(p1), . . . , ps ∈ σ′(ps−1), p̂ ∈ σ′(ps).

On each time level t, introduce the linear problem

(5) (L+ c)W (p, t) = f0(p, t), p ∈ ωh,


