
INTERNATIONAL JOURNAL OF c© 2011 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 8, Number 3, Pages 484–495

CONVERGENCE OF GRADIENT METHOD FOR DOUBLE

PARALLEL FEEDFORWARD NEURAL NETWORK

JIAN WANG, WEI WU, ZHENGXUE LI, AND LONG LI

Abstract. The deterministic convergence for a Double Parallel Feedforward

Neural Network (DPFNN) is studied. DPFNN is a parallel connection of a

multi-layer feedforward neural network and a single layer feedforward neural

network. Gradient method is used for training DPFNN with finite training

sample set. The monotonicity of the error function in the training iteration

is proved. Then, some weak and strong convergence results are obtained, in-

dicating that the gradient of the error function tends to zero and the weight

sequence goes to a fixed point, respectively. Numerical examples are provided,

which support our theoretical findings and demonstrate that DPFNN has faster

convergence speed and better generalization capability than the common feed-

forward neural network.

Key Words. Double parallel feedforward neural network, gradient method,

monotonicity, convergence.

1. Introduction

ADouble Parallel Feedforward Neural Network (DPFNN) is a parallel connection
of a multi-layer feedforward neural network and a single layer feedforward neural
network. In a DPFNN, the output nodes not only receive the recodification of
the external information through the hidden nodes, but also receive the external
information itself directly through the input nodes. DPFNN involves a paratactic
relationship between linear and nonlinear mappings [4, 1]. As in the case for the
common feedforward neural networks [18, 13, 19, 20], the most widely used learning
method for DPFNN remains to be the gradient method [17, 10, 15, 2]. It is shown
(cf. [5]) that the training speed and accuracy are greatly improved for DPFNN
compared with corresponding multi-layer feedforward neural networks [8, 12, 11, 3,
9, 7]. A double parallel feedforward process neural network with similar structure
and updating rule as DPFNN is proposed in [22]. In [16], an alternate learning
iterative algorithm for DPFNN is presented. The truncation error caused by word
length on the accuracy of DPFNN is analyzed in [6].

We are concerned in this paper with the convergence of the gradient method
for training DPFNN. In particular, we first prove the monotonicity of the error
function in the gradient learning iteration for DPFNN. Then, some weak and strong
convergence results are obtained, indicating that the gradient of the error function
tends to zero and the weight sequence goes to a fixed point, respectively. Some
supporting numerical examples are also provided, which support our theoretical

Received by the editors May 4, 2009 and, in revised form, March 22, 2011.
2000 Mathematics Subject Classification. 68W40, 92B20, 62M45.
This research was supported by the National Natural Science Foundation of China

(No.10871220).

484



DOUBLE PARALLEL FEEDFORWARD NEURAL NETWORK 485

1
u

2
u

p
u

1
w

2
w

1,1
v

p
x

1
x

2
x

1 2

y

m
w

pm
v

,

m

Figure 1. Topological Structure of DPFNN.

findings and demonstrate that DPFNN has faster convergence speed and better
generalization capability than the common feedforward neural network.

The rest part of this paper is organized as follows. The structure of and the gra-
dient method for DPFNN are introduced in Section 1. In Section 2 the convergence
results are presented. Section 3 provides a few numerical examples to support our
theoretical findings. Some brief conclusions are drawn in Section 4. Finally, an
appendix is given, in which the details of the proof are gathered.

2. Double Parallel Feedforward Neural Networks

Figure 1 shows the DPFNN structure considered in this paper. It is a three-
layer network with p input nodes, m hidden nodes and 1 output node. We de-
note the weight vector connecting the hidden layer and the output layer by w =
(w1, · · · , wm)T ∈ R

m, and the weight matrix connecting the input layer and the
hidden layer by V = (vi,j)m×p, where vi = (vi,1, · · · , vi,p)T ∈ R

p is the weight
vector connecting the input layer and the i-th node of the hidden layer. Similarly,
we denote the weight vector connecting the input layer and the output layer by
u = (u1, · · · , up)T ∈ R

p.
For simplicity, all the weight vectors are incorporated into a total weight vector

W = (uT ,vT
1 , · · · ,vT

m,w
T )T ∈ R

p+mp+m. Let g : R→ R be an activation function
for the hidden and the output layers. For any z = (z1, · · · , zm)T ∈ R

m, we define

(1) G (z) = (g (z1) , g (z2) , · · · , g (zm))T ∈ R
m.

For any given input vector x ∈ R
p, the actual output y ∈ R of the neural system is

computed by

(2) y = g (w ·G (Vx) + u · x) .

We remark that the bias terms should be involved in the neural system. However,
following a common strategy, we set the last component of, say, the input vector
x to be −1, and so the last component of vi corresponds to the bias term. This
strategy allows us not to write explicitly the bias terms in the description of our
problem.


