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AN ELASTO-VISCOPLASTIC CONTACT PROBLEM: AN A

POSTERIORI ERROR ANALYSIS AND COMPUTATIONAL

EXPERIMENTS

JOSÉ R. FERNÁNDEZ

Abstract. In this paper, we reconsider a contact problem between an elasto-viscoplastic body
and a deformable obstacle. The contact is modeled by the classical normal compliance contact
condition. Then, fully discrete approximations are obtained by using the finite element method
to approximate the spatial variable and the forward Euler scheme to discretize time derivatives.
An a posteriori error analysis is provided and upper and lower error bounds are obtained. Finally,
some two-dimensional numerical simulations are presented to demonstrate the accurary and the
behavior of the error estimators.
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1. Introduction

During the past twenty years many problems have been studied dealing with
elasto-viscoplastic materials modeled using the constitutive law introduced in [9]
(see the monograph [19] and its references). Then, numerous nonlinear problems
including this kind of materials (as, for instance, contact problems) were considered
(see, e.g., [1, 2, 5, 6, 10, 13, 16, 24, 25, 26], the well-written monograph [17] and the
large number of references cited therein). We note that, as it was justified in [9],
this law is mechanically correct and it can be used for the modeling of some types
of metals or rocks since it allows both creep and relaxation phenomena.

In this work, we revisite the contact problem between an elasto-viscoplastic body
and a deformable obstacle. The contact is modeled using the classical normal
compliance contact law described, for example, in [20, 21]. This problem was
already studied in [14] (see also the paper [11] where internal variables were also
considered). A priori error estimates were proved there (see Section 3 where they are
recalled) and numerical simulations were provided in order to show the accuracy of
the algorithm and the behavior of the solution. However, even if many other papers
were published since then, only a priori error estimates were obtained. Recently,
an a posteriori error analysis was presented in [12] in the case without contact,
extending some arguments already applied in the study of the heat equation (see,
e.g., [22, 23, 28]), some parabolic equations ([3]) or the Stokes equation ([4]). Hence,
this work continues the above referenced work by Fernández and Hild [12], extending
the analysis presented there to the case including the contact with a deformable
obstacle and also the previous paper [14], where the a priori error analysis was
conducted. Moreover, here we also perform several two-dimensional numerical si-
mulations in order to demonstrate the accuracy of the algorithm and the behavior
of the error estimators.

The paper is outlined as follows. In Section 2 the mechanical model and its
variational formulation are briefly described following the notation and assumptions
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introduced in [14]. Then, fully discrete approximations are provided in Section 3,
by using the finite element method to approximate the spatial variable and the
forward Euler scheme to discretize the time derivatives. An a priori error analysis
obtained in [14] is recalled. Then, by using some results obtained in the study of
the heat equation, an a posteriori error analysis is done in Section 4, providing an
upper bound for the error, Theorem 4.1, and a lower bound, Theorem 4.2. Finally,
some two-dimensional numerical simulations are presented in Section 5 in order to
demonstrate the accuracy and the behavior of the error estimators introduced in
the previous section.

2. Mechanical and variational formulations

In this section, we present a brief description of the contact problem between an
elasto-viscoplastic body and a deformable obstacle (further details can be found in
[14, 17]).

Denote by S
d the space of second order symmetric tensors on R

d and by “·” and
| · | the inner product and the Euclidean norms on R

d and S
d.

Let Ω ⊂ R
d, d = 2, 3, denote a domain occupied by an elasto-viscoplastic body

with a smooth boundary Γ = ∂Ω decomposed into three disjoint parts ΓD, ΓF and
ΓC such that meas (ΓD) > 0 and meas (ΓC) > 0. Moreover, let [0, T ], T > 0, be
the time interval of interest and denote by ν the unit outer normal vector to Γ.
The body is being acted upon by a volume force of density f0, it is clamped on
ΓD and surface tractions with density fF are applied on ΓF . Finally, we assume
that the body may come in contact with a deformable obstacle, on the boundary
part ΓC , which is located at a distance g measured along the outward unit normal
vector ν (see FIGURE 1).

Figure 1. Physical setting: an elasto-viscoplastic body in contact
with a deformable obstacle.

Let x ∈ Ω and t ∈ [0, T ] be the spatial and time variables, respectively, and, in
order to simplify the writing, we do not indicate the dependence of the functions
on x and t. Moreover, a dot above a variable represents the derivative with respect
to the time variable.

Let us denote by u = (ui)
d
i=1, σ = (σij)

d
i,j=1 and ε(u) = (εij(u))

d
i,j=1 the

displacement field, the stress tensor and the linearized strain tensor, respectively.


