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A MULTILEVEL METHOD FOR SOLVING THE HELMHOLTZ

EQUATION : THE ANALYSIS OF THE ONE-DIMENSIONAL

CASE

S. ANDOUZE, O. GOUBET, AND P. POULLET

Abstract. In this paper we apply and discuss a multilevel method to solve a scattering problem.
The multilevel method belongs to the class of incremental unknowns method as in [10]; in this

work, the best performance was obtained with a coarsest grid having roughly two points per linear

wavelength. We analyze this method for a simple model problem following H. Yserentant [17]. In
this case, the main limitation to multilevel methods is closely linked to the indefiniteness of the

Helmholtz problem.
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1. Introduction

In this paper we are interested in applying the strategy introduced by H. Yserentant
[17] to solve an indefinite elliptic boundary value problem that comes from acoustics
[7], [6]. This problem, leading to a non-coercive bilinear form, reads as follows

−uxx − k2u = f, in ]0, 1[(1.1)

u(0) = 0,(1.2)

ux(1) = ıku(1).(1.3)

Here we adopt the notations ı =
√
−1, while the wavenumber k = ωL

c is a positive
real number (supposed larger than 1 in the sequel). Here some scaling has been
performed; this problem occurs when one considers a solution of the wave equation
utt − c2uxx = 0 that moves from the left to the right boundary, whose frequency
is ω and that satisfies some Sommerfeld radiation condition at +∞. For numerics,
one tracks this solution on a box [0, L], and after scaling in space, this condition
(1.3) replaces u(x) ∼ eıkx at +∞.

This one-dimensional problem belongs to exterior boundary value problems of
the form

−∆u− k2u = f in Ω(1.4)

u = g on Γ ⊂ ∂Ω(1.5)

Fu = 0 on ∂Ω(1.6)

where the operator F corresponds to the chosen absorbing boundary condition
(ABC), while the second equation depends of the (acoustic) properties of the scat-
terer. The Helmholtz problem at hand is expected to produce a solution with an
oscillatory behavior on the wavelength (λ = 2π/k) scale. The analysis conducted
hereafter should be extended to the two-dimensional or three-dimensional prob-
lem with an approximation of first order ABC without any other difficulties than
technical ones. Otherwise, if one considers the problem with Sommerfeld radiation
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condition at infinity, one must use a different framework as weighted Sobolev spaces,
but working without the assumptions needed to validate the Poincaré inequality
might be hard.

Multilevel methods, like hierarchical basis [15, 16] for finite element approxi-
mation or incremental unknowns [12] in finite difference context, are effective for
the numerical solution of many partial differential equations. They seem being
almost so robust and powerful as classical multigrid methods for solving elliptic
partial differential equations [3]. Nevertheless, for large scales problems, multilevel
approaches do not apply straightforwardly and more involved method have to be
considered [9, 1, 8]. For some classes of problems like ours, it has been proven that
the effectiveness of classical multigrid methods often fails [13, 4, 5]. In particular,
the indefiniteness of the discrete problems is certainly the main reason for which
the coarsest grid must be not too coarse.

The multigrid methods by combining interpolation and pre and post-smoothing
catch step by step the harmonics of the solution whereas the multilevel methods
involve the projection of the solution onto a Krylov space in the multilevel basis.
Even if the approach of the latter looks quite far away from the classical multigrid
methods, we will prove that they have a similar limitation onto the sparsity of the
coarsest level of grid for indefinite discrete problems (this result has been pointed
out in [10]).

For the Helmholtz problem under consideration, despite the fact that the asso-
ciated bilinear form is not positive definite, one can exhibit a large subspace W of
the energy space with a finite co-dimension (which varies as k4), and such that the
bilinear form restricted to W becomes coercive. Hence, dealing with finite element
multilevel approximation of the equation, we develop the strategy introduced by H.
Yserentant to trap the bad behavior of the bilinear form on a finite element space
corresponding to a coarse grid approximation of the equation, and then to proceed
to multilevel analysis on finer grids. The significant drawback of our method is
that it does not apply to very high frequency problems since the magnitude of the
coarse grid behaves as k4.

The outline of this paper is as follows. In section 2, we introduce the one-
dimensional model problem and study its properties. The section 3 is devoted to
its approximation by multilevel finite element (which is similar to the incremental
unknowns in finite differences). One shows in particular the influence of the indef-
initeness of the problem onto the discrete problem. Computations of the condition
number of the stiffness matrix for the hierarchical basis are given in section 4, in
agreement with the analysis.

Let us complete this introduction by some notations. To treat the absorbing
boundary condition (1.3), we need to use complex valued functions. Furthermore,
to adapt the guidelines introduced in [17] to complex valued functions, we consider
L2(0, 1) the real-Hilbert space whose scalar product is

(u, v) = Re

∫ 1

0

u(x)v(x)dx = Re

∫
uv̄dx.(1.7)

Note that one omits to write generic constant that may vary from one line to another
one, but that is independent of k and of h0, h, denote respectively the mesh size
of the coarse and fine grid approximation of the problem. We also use the space
V = {u ∈ L2(0, 1);ux ∈ L2(0, 1) and u(0) = 0}. For the sake of conciseness, we


