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IMMERSED FINITE ELEMENT METHODS FOR ELLIPTIC

INTERFACE PROBLEMS WITH NON-HOMOGENEOUS JUMP

CONDITIONS

XIAOMING HE, TAO LIN, AND YANPING LIN

Abstract. This paper is to develop immersed finite element (IFE) functions

for solving second order elliptic boundary value problems with discontinuous

coefficients and non-homogeneous jump conditions. These IFE functions can be

formed on meshes independent of interface. Numerical examples demonstrate

that these IFE functions have the usual approximation capability expected

from polynomials employed. The related IFE methods based on the Galerkin

formulation can be considered as natural extensions of those IFE methods in the

literature developed for homogeneous jump conditions, and they can optimally

solve the interface problems with a nonhomogeneous flux jump condition.
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1. Introduction

In this paper, we consider the following typical elliptic interface problems:

−∇ ·
(

β∇u
)

= f(x, y), (x, y) ∈ Ω,(1.1)

u|∂Ω = g(x, y)(1.2)

together with the jump conditions on the interface Γ:

[u] |Γ = 0,(1.3)
[

β
∂u

∂n

]

|Γ = Q(x, y).(1.4)

Here, see the sketch in Figure 1, without loss of generality, we assume that Ω ⊂ IR2 is
a rectangular domain, the interface Γ is a curve separating Ω into two sub-domains
Ω−, Ω+ such that Ω = Ω− ∪ Ω+ ∪ Γ, and the coefficient β(x, y) is a piecewise
constant function defined by

β(x, y) =

{

β−, (x, y) ∈ Ω−,
β+, (x, y) ∈ Ω+.

Interface problem (1.1) - (1.4) appears in many applications. For example, the
electric potential u satisfies jump conditions (1.3) and (1.4) on the interface between
two isotropic media if the surface charge density Q on Γ is not zero [10]. Another
example is the modeling of water flow in a domain consisting of two stratified porous
media with a source at the interface between the media [35].
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Figure 1. A sketch of the domain for the interface problem.

The interface problem (1.1) - (1.4) can be solved by conventional numerical meth-
ods, including both finite difference (FD) methods, see [17, 37] and references
therein, and finite element (FE) methods, see [3, 6, 9] and references therein, pro-
vided that the computational meshes are body-fitting. A body-fitting mesh, see
the illustration in Figure 2, is constructed according to the interface such that each
element/cell in this mesh is essentially on one side of the interface. Physically, this
means each element/cell in a body-fitting mesh is essentially occupied by one of the
materials forming the simulation domain of the interface problem.

Figure 2. The plot on the left shows how elements are placed
along an interface in a standard FE method. An element not al-
lowed in a standard FE method is illustrated by the plot on the
right.

For a non-trivial interface Γ, it is usually not possible to solve the interface problem
on a structured mesh satisfactorily. On the other hand, there are applications, such
as particle-in-cell simulation of plasma driven by the electric field in a Micro-Ion
Thrusters [39, 40], in which it is preferable to solve the interface problem on a
structured Cartesian mesh. Therefore, many efforts have been made for developing
interface problem solvers that can use meshes independent of interface. In finite
difference/volume formulation, we note the Cartesian grid methods [36], embedded
boundary methods [18], immersed interface method [12, 20, 26, 27, 29], cut-cell
methods [19, 21], matched interface and boundary methods [44, 45], etc.. In finite
element formulation, Babuška et al. [4, 5] developed the generalized finite element
method. Their basic idea is to form the local basis functions in an element by solving
the interface problem locally. The local basis functions in their method can capture
important features of the exact solution and they can even be non-polynomials. The
recently developed immersed finite element (IFE) methods [1, 2, 8, 11, 13, 15, 16,
24, 25, 28, 30, 31, 32, 33, 34, 38, 41] also fall into this framework. The IFEs are
developed such that their mesh can be independent of the interface, but the local
basis functions are constructed according to the interface jump conditions; hence,


