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ROBUST A-POSTERIORI ESTIMATORS FOR MULTILEVEL

DISCRETIZATIONS OF REACTION–DIFFUSION SYSTEMS

VIVIANE KLEIN AND MA LGORZATA PESZYŃSKA

Abstract. We define a multilevel finite element discretization for a coupled stationary reaction–
diffusion system in which each component can be defined on a separate grid. We prove convergence
of the scheme and propose residual a-posteriori estimators for the error in the natural energy norm
for the system. The estimators are robust in the coefficients of the system. We prove upper and
lower bounds and illustrate the theory with numerical experiments.
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1. Introduction

In this paper we develop a-priori and a-posteriori analysis for finite-element dis-
cretizations of stationary reaction-diffusion systems. We are particularly interested
in developing results which are uniform, in the sense made precise below, for fam-
ilies of such systems characterized by coefficients of different orders of magnitude.
Additionally, since the individual components of such systems may have different
variability, we recognize that they should be approximated on multilevel grids. The
choice of such grids is guided by the a-posteriori error estimators.

A-posteriori analysis for finite element approximations of scalar self-adjoint el-
liptic equations is well developed [5, 35, 12]. The various error estimators that have
been proposed differ in how closely they estimate the error and in the complexity
of implementation and computations. In addition, their properties may depend
significantly on the coefficients of the underlying problem.

Consider first the scalar stationary reaction–diffusion equation

−∇ · (a∇u) + κu = f,(1)

with a solution u. Consider also the corresponding standard Galerkin finite element
formulation for (1) with a solution uh, and an a-posteriori estimator ηs for the error
Es =||| u− uh ||| in the energy norm ||| · ||| associated with (1).

In general, the efficiency index θs := ηs

Es
may significantly depend on the pa-

rameters in Ps = (a, κ). Standard theory, cf. [10, 5], considers Ps = 12 := (1, 1)
and does not extend easily to the families of (1) where the parameters in Ps vary
significantly. The concept of robustness [37, 36, 9, 39, 39, 40, 27, 26] allows to study
such families of problems (1): the estimator ηs for (1) is robust if θs is uniform in
Ps, i.e., it remains constant or at least stable for a wide range of values in Ps.
Robust estimators are applicable, e.g., to singularly perturbed problems.

Now consider the problem of interest in this paper: the system of station-
ary reaction-diffusion equations posed in some domain Ω parametrized by P =
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(λ1, λ2, a, b, c)

λ1u−∇ · (a∇u) + c(u− v) = f, x ∈ Ω,(2)

λ2v −∇ · (b∇v) + c(v − u) = g, x ∈ Ω,(3)

and complemented by appropriate boundary conditions.
The applications and analysis of general reaction-diffusion systems are consid-

ered, among other works, in [6, 33]. The special case of zero’th order coupling term
associated with c, and of coefficients in P that may vary from case to case by or-
ders of magnitude, has several applications. See for example the reaction-diffusion
systems as in [23], double diffusion systems [7, 22, 31], ([30], II.5), and singular per-
turbations or regularizations of degenerate systems such as first-order reactions or
adsorption at equilibrium and non-equilibrium [6, 25, 32]. See also pseudo-parabolic
systems [24]. Our interest in this paper is in the numerical schemes; applications
will be presented elsewhere.

An important observation is true for the families of solutions corresponding to the
families of P . In some applications the components u and v of the solution to (2)-(3)
may have significantly different variability. In such cases it is natural to approximate
the smooth component on a coarse grid and the less-smooth component on a fine
grid. Such a multilevel discretization requires appropriate grid transfer operators
so that the coupling term can be defined and the convergence ensured.

In addition, note that (2)-(3) can be seen as a prototype of a discretized-in-
time parabolic system. While a-posteriori error estimation for parabolic problems
can proceed along several paths [21, 34], some involve the consideration of robust
estimates for (1) [3], and of the separation of spatial and temporal discretization
errors without solving dual problems and/or backward heat equation [38, 8].

The above remarks motivate our work on robust estimators for the system (2)-
(3). Our results i) extend the scalar estimators from [37] to the case of a coupled
system, and ii) extend the work [4, 2] in which P was fixed. In addition, to our
knowledge, ours is the only result concerning iii) multilevel schemes for (2)–(3).

A separate direction from a-posteriori error estimation is the use of special grids
such as Shishkin and equidistributed meshes for resolving boundary layers in sin-
gularly perturbed problems [28, 19, 20]. For scalar problems (1) in 1D, it can be
shown that with such grids, the dependence of the error of numerical solution on the
parameters in Ps can be eliminated, e.g., by applying the MMPDE [19, 20]. We are
unsure however how such grids can be constructed for systems when more than one
of the parameters vary; it appears that the methods would not be a straightforward
extension of [19].

The paper is organized as follows. We introduce notation and preliminaries in
Section 2. In Section 3 we prove a-priori estimates for the multilevel discretization
of (2)–(3). The main results of this paper are given in Section 4 where we define
appropriate a-posteriori error estimators and prove upper and lower bounds; the
estimators that we develop are robust in P . Our theoretical results are illustrated
by numerical experiments presented in Section 5.

We close with a few remarks on notation. Throughout the paper C means
a generic positive constant; its value is different in each context in which it is
used. The symbol ∂nw denotes the normal component of ∇w with respect to some
boundary or edge. In all integrals we omit the symbol of integration variable; this
helps to keep the expressions compact. Next, our theoretical results are given for
d = 2, 3 spatial dimensions. The case d = 1 is also covered by the theory but
the standard nomenclature and assumptions [14] do not apply; see [26] for robust
estimates in d = 1.


