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Abstract. In this paper, the θ scheme of operator splitting methods is applied

to the Navier-Stokes equations with nonlinear slip boundary conditions whose

variational formulation is the variational inequality of the second kind with

the Navier-Stokes operator. Firstly, we introduce the multiplier such that the

variational inequality is equivalent to the variational identity. Subsequently, we

give the θ scheme to compute the variational identity and consider the finite

element approximation of the θ scheme. The stability and convergence of the

θ scheme are showed. Finally, we give the numerical results.
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1. Introduction

Numerical simulation for the incompressible flow is the fundamental and signif-
icant problem in computational mathematics and computational fluid mechanics.
It is well known that the mathematical model of viscous incompressible fluid with
homogeneous boundary conditions is the Navier-Stokes equations

(1)

{

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f,

divu = 0.

It is obvious that (1) is a coupled system with a first-order nonlinear evolution
equation and an imposed incompressible constrain so that the numerical simulation
for the Navier-Stokes equations is very difficult. The popular technique to overcome
this difficulty is to relax the solenoidal condition in an appropriate method and
to result in a pesudo-compressible system, such as the penalty method and the
artificial compressible method. The operator splitting method is also very useful to
overcome this shortage. The main advantage is that it can decouple the difficulties
associated to the nonlinear property with those associated to the incompressible
condition. For more detail, see [1].

The operator splitting method has been a popular tool for the numerical simula-
tion of the incompressible viscous flow. Based on the main idea of the operator split-
ting method, there have some different schemes, such as the Peaceman-Rachford
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scheme [2], the Douglas-Rachford scheme [3] and the θ scheme [4-5]. In this pa-
per, we only apply the θ scheme to the Navier-Stokes equations with nonlinear slip
boundary conditions. This class of boundary conditions are introduced by Fujita in
[6-7], where he investigated some hydrodynamics problems under nonlinear bound-
ary conditions, such as leak and slip boundary conditions involving a subdifferential
property. These types of boundary conditions appear in the modeling of blood flow
in a vein of an arterial sclerosis patient and in that of avalanche of water and rocks.
Moreover, the variational formulation of the Navier-Stokes equations with these
nonlinear boundary conditions is the variational inequality of the second kind.

The stability analysis of the θ scheme for the Navier-Stokes equations with the
whole homogeneous Dirichlet boundary conditions has been investigated in [8].
The difficulty lies in the treatment of the trilinear term in the right-hand side.
However, in this paper, besides the trilinear term, another difficulty is due to that
the variational formulation is the variational inequality. To overcome this difficulty,
we introduce the multiplier such that the variational inequality is equivalent to the
variational identity.

2. The Navier-Stokes Equations

Consider the following Navier-Stokes equations:

(2)

{

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f, in QT ,

divu = 0, in QT ,

where QT = Ω× [0, T ] for some T > 0, u(t, x) denotes the velocity, p(t, x) denotes
the pressure, f(t, x) denotes the external force and ν > 0 is the kinematic viscous
coefficient. The domain Ω ⊂ R

2 is a bounded domain.
Given the initial value u(0, x) = u0(x) in Ω, we consider the following nonlinear

slip boundary conditions:

(3)

{

u = 0 on Γ× (0, T ],
un = 0, −στ (u) ∈ g∂|uτ | on S × (0, T ],

where Γ ∩ S = ∅,Γ ∪ S = ∂Ω with |Γ| 6= 0, |S| 6= 0. g is a scalar functions; un =
u · n and uτ = u − unn are the normal and tangential components of the velocity,
where n stands for the unit vector of the external normal to S; στ (u) = σ − σnn,
independent of p, is the tangential component of the stress vector σ which is defined

by σi = σi(u, p) = (µeij(u)− pδij)nj , where eij(u) =
∂ui

∂xj +
∂uj

∂xi , i, j = 1, 2. The set
∂ψ(a) denotes a subdifferential of the function ψ at the point a:

∂ψ(a) = {b ∈ R
2 : ψ(h)− ψ(a) ≥ b · (h− a), ∀ h ∈ R

2}.
Denote

V = {u ∈ H1(Ω)2; u|Γ = 0, u·n|S = 0}, V0 = H1
0 (Ω)

2; Vσ = {u ∈ V | divu = 0};

H = {u ∈ L2(Ω)2; u · n|∂Ω = 0}, M = L2
0(Ω) = {q ∈ L2(Ω);

∫

Ω

qdx = 0}.

Let || · ||k be the norm of the Hilbert space Hk(Ω) or Hk(Ω)2. Let (·, ·) and || · || be
the inner product and the norm in L2(Ω)2 or L2(Ω). Then we can equip the inner
product and the norm in V by (∇·,∇·) and || · ||V = ||∇ · ||, respectively, because
||∇ · || is equivalent to || · ||1 according to the Poincare inequality.

If X is a Banach space, Lp(0, T,X), 1 ≤ p < +∞ will be the linear space of
measurable functions from the interval (0, T ) into X such that

∫ T

0

||u(t)||pXdt <∞.


