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SUBGRID MODEL FOR THE STATIONARY INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS BASED ON THE HIGH ORDER

POLYNOMIAL INTERPOLATION

YAN ZHANG, MINFU FENG, AND YINNIAN HE

Abstract. In this paper, we propose a subgrid finite element method for the

two-dimensional (2D) stationary incompressible Naver-Stokes equation (NSE)

based on high order finite element polynomial interpolations. This method

yields a subgrid eddy viscosity which does not act on the large scale flow struc-

tures. The proposed eddy viscous term consists of the fluid flow fluctuation

stress. The fluctuation stress can be calculated by means of simple reduced-

order polynomial projections. Assuming some regular results of NSE, we give

a complete error analysis. Finally, in the part of numerical tests, the numeri-

cal computations show that the numerical results agree with some benchmark

solutions and theoretical analysis very well.
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1. Introduction

In this paper, we focus on formulating a subgrid eddy viscosity method for the
stationary incompressible Navier-Stokes equation. For the subgrid method, we
must admit that there exists a scale separation between large and small scales.
This model can be viewed as a viscous correction for large scale fluid flows. For
the laminar fluid flows, the added subgrid viscosity term should not affect the large
scale structures of fluid flow fields and should tend to vanish. These kinds of subgrid
methods are flexible and effective for high Reynolds number fluid flows.

It is well-known that for most problems of fluid flows, the numerical algorithms
capturing all scales of fluid flows are impossible. In complex fluid flows, there
often exist several scales that span from the large scales to the small Kolmogorov
scales which hardly be resolved by state-of-the-art computers for most engineering
problems. Especially, for the convection-dominated fluid flows, we often need to
consider the dispersive effects of unresolved scales on resolved scales. The eddy
viscosity models are often utilized to model and solve this kind of problems by
engineers, which have been achieved many successes in engineering practice [1].
These kinds of models are firstly proposed by Boussinesq [2], developed by Taylor
and Prandlt [3], and introduced a dissipative mechanism by Smagorinsky [4]. At
present, these models have been further improved by various numerical methods [5,
6, 7]. In existing mathematical models, these eddy viscosity models are established
by introducing the scale separation based on L2 and elliptic projection. Recently,
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Hughes et al has proposed a variational multi-scale method (VMM) in which the
diffusion acts only on the finest resolved scales. This VMM is very effective to model
this complex multi-scale phenomena. The key problem focuses on introducing a
reasonable scale separation (coarse and fine scales). Generally, there exist many
different ways to define coarse and fine scales according to the VMM framework [8].
According to the idea of VMM, the subgrid methods in this paper are variational
multiscale methods.

In this paper, we will implement a subgrid method to remove the dispersive
effects from small scales by virtue of low-order polynomial projections. The added
subgrid term does not need special treatments for implementing calculations. The
added subgrid term is calculated by simple treatments of basis functions, which will
be given in the section of numerical tests. And you can find an analogous treatment
in [9]. But, the method in [9] is based on a projection from a fine finite element
space to a coarse finite element space.

The adopted finite element pair is the P2/P1 pair to approach velocity-pressure
fields. For low Reynolds number fluid flows, the results indicate that this method
has a convergence rate of the same order as the standard Garlerkin method. By the
numerical tests, it is shown that the proposed subgrid correction model can simulate
the fluid flows correctly and does not act on the large scale flow structures.

The outline of the paper is organized as follows. In the next section we introduce
the Navier-Stokes equations (NSE) and the corresponding function settings. In
section 2, we give the NSE and the corresponding functional settings. In section
3, the subgrid viscous term is introduced into the NSE and the standard Galerkin
discretization of the Navier-Stokes equations is given. In section 4, we show the
results of the error estimates. Some numerical results are presented in section 5,
which show the correctness and efficiency of the methods. Finally, we give some
conclusions.

2. Navier-Stokes equations and functional settings

Let Ω ⊂ R
2 be a bounded domain with Lipschitz continuous boundary Γ = ∂Ω.

We consider the stationary Navier-Stokes equation

(1)





−ν∆u+∇p+ (u · ∇)u = f, in Ω
div u = 0, in Ω

u = 0, on Γ

where u = (u1, u2) represents the velocity vector, p denotes the pressure, f is the
body force and ν > 0 is the viscosity.

We introduce the following functional settings

X := H1
0 (Ω)

2, V := {v ∈ X, divv = 0}, Y := (L2(Ω))2

Q := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω qdx = 0}.

We denote by (·, ·) and ‖ · ‖0 are the inner product and norm in L2(Ω) or L2(Ω)2.
The space Hk(Ω) or Hk(Ω)2 denotes the standard Sobolev spaces with norm ‖ · ‖k
and semi-norm| · |k. The space H1

0 (Ω) or H1
0 (Ω)

2 is equipped with the following
scalar product and norm

((u, v)) = (∇u,∇v), |u|1 = ((u, u))1/2.

The space H−1(Ω)2 is the dual space of H1
0 (Ω)

2 equipped with the norm

‖z‖−1 = sup
v∈H1

0
(Ω)2

|(z, v)|
|v|1


