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LOCAL PROJECTION FINITE ELEMENT STABILIZATION FOR

DARCY FLOW

KAMEL NAFA

Abstract. Local projection based stabilized finite element methods for the

solution of Darcy flow offer several advantages as compared to mixed Galerkin

methods. In particular, the avoidance of stability conditions between finite

element spaces, the efficiency in solving the reduced linear algebraic system,

and the convenience of using equal order continuous approximations for all

variables. In this paper we analyze the pressure gradient method for Darcy

flow and investigate its stability and convergence properties.
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1. Introduction

Numerical methods for Darcy equations are traditionally-based on a primal sin-
gle field formulation for the pressure or on the mixed two field velocity-pressure
formulation. It is well known that the choice of the finite element spaces, for the
mixed formulation, is subject to the inf-sup stability condition ([10]). This has
lead to the use of classical mixed Raviart-Thomas and Brezzi-Douglas-Marini finite
elements ([10]). This approach though giving good accuracy for both velocity and
pressure ([20]) has its draw back complexity.

It has been a few years since stabilized finite element methods have been ex-
tended to the Darcy equations (see, [23], [5], [6], and [12]). Despite the fact that
such methods are well established for fluid flow problems based on Stokes-like op-
erator (see, [19], [17], [32], [7], [3], [16], [21], and [22]). In [23] a term based on the
residual of Darcy law is added to the classical Galerkin formulation making the for-
mulation stable for all combination of conforming continuous velocity-pressure ap-
proximations. Another class of stabilized methods has been derived using Galerkin
methods enriched with bubble functions (see, [1] and [2]). Alternative stabilization
techniques based on a least squares formulation have been proposed by ([5]), and
([6]).

Recently, local projection methods that seem less sensitive to the choice of pa-
rameters and have better local conservation properties were proposed for Stokes
problem (see, [14], and [4]). The two-level pressure gradient method with a projec-
tion onto a discontinuous finite element space of a lower degree defined on a coarser
grid has been analyzed in [4], [8], [25], [26], and [12]. We note that although the
two-level pressure gradient stabilization method gives a slightly bigger discretisa-
tion stencil, the drawback is not severe because the pressure-gradient unknowns
can be eliminated locally.
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In this paper we analyze the pressure gradient stabilization method for the Darcy
equations. As in [29], [30], [27] and [28], the stability of the pressure-gradient
method is proved by constructing an interpolant with additional orthogonality prop-
erty with respect to the projection space. As a result, optimal rates of convergence
are found for the velocity and pressure approximations.

2. Variational formulation

Let Ω be a bounded open region of R2 with piecewise smooth boundary ∂Ω.
Darcy’s law for the flow of a viscous fluid in a permeable medium, and conservation
of mass are written as follows

u+∇p = 0 in Ω(1)

∇ · u = f in Ω(2)

u · n = 0 on ∂Ω(3)

where, u is the Darcy velocity vector, p is the pressure, and n the outward normal
vector.

Let

V = H0(div,Ω) =
{

v ∈
[

L2(Ω)
]2

: ∇ · v ∈ L2(Ω), u · n = 0 on ∂Ω
}

Q = H1(Ω) ∩ L2
0(Ω)

where L2
0(Ω) denotes the set of square integrable functions with null average.

Define the forms

A(u, p;v, q) = (u,v)− (p,∇ · v) + (q,∇ · u)(4)

and

F (v, q) = (f,q),(5)

for all (v, q) ∈ V ×Q, with (·, ·), as usual, denoting the L2−inner product on the
region Ω.

Then, the weak formulation of (1)-(3) reads in compact notation as

A(u, p;v, q) = F (v, q) , ∀(v,q) ∈ V ×Q.(6)

A natural norm for the above problem is

‖(u, p)‖D = ‖u‖
2
0,Ω + ‖∇.u‖

2
0,Ω + ‖p‖

2
0,Ω .(7)

Let Vh and Qh be finite dimensional subspaces of V and Q, respectively. Then,
the classical Galerkin discrete problem reads

Find (uh, ph) ∈ Vh ×Qh such that:

A(uh, ph;v,q) = F (v, q) , ∀(v, q) ∈ Vh ×Qh.(8)

Note that formulation (8) is stable and accurate only for velocity and pressure
approximations satisfying the inf-sup condition (see, for example [10]). In particu-
lar, this condition rules out low equal-order C0 approximations of the pressure and
velocity.


