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ERROR ESTIMATES OF MORLEY TRIANGULAR ELEMENT

SATISFYING THE MAXIMAL ANGLE CONDITION

SHIPENG MAO, SERGE NICAISE, AND ZHONG-CI SHI

(Communicated by Xue-Cheng Tai)

Abstract. In this paper, we establish the convergence of a nonconforming

triangular Morley element for the plate bending problem on degenerate meshes.

An explicit bound for the interpolation error is derived for arbitrary triangular

meshes without any assumptions. The optimal convergence rates of the moment

error and rotation error are derived for triangular meshes satisfying the maximal

angle condition. Our results can also be extended to the three dimensional

Morley element presented recently in [41]. Finally, some numerical results are

reported that confirm our theoretical results.
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1. Introduction

It is well known that the regularity assumption on the meshes [13, 16], i.e.,
bounded ratio between outer and inner diameters, leads to the convergence of stan-
dard finite element methods. However the above conventional mesh condition is
a severe restriction for some particular problems of recent interests. For instance,
for problems for which the solution may have anisotropic behavior in some parts
of the domain, that is to say, the solution varies significantly only in certain direc-
tions. Such problems are frequently encountered in singularly perturbed convection-
diffusion-reaction equations where boundary or interior layers appear or problems
set on domains with edges where edge singularities may occur. In such cases, regu-
lar meshes are inappropriate or may even fail to give satisfactory results, hence the
use of degenerate (or anisotropic) meshes is recommended.

The early mathematical consideration of anisotropic elements goes back to the
seventies [11, 21]. Since the end of the eighties, anisotropic elements have been
extensively studied. In particular, we refer to Apel et al [4-9], Chen et al [15, 27-

29], Durán et al [1-3, 17, 18], Formaggia et al [19, 20], Kr̆íz̆ek [22, 23], Kunert

[24, 25], Shenk [36], Z̆enisek [43, 44] and references therein. As applications of
anisotropic finite elements, let us quote for example, the investigation of Laplace
type problems in domains with edges [5, 7, 8], layers in some singularly perturbed
problems [6, 18, 25], anisotropic phenomena in the solution of Stokes and Navier-
Stokes problems [9], and anisotropic a posteriori error estimates [20, 24, 25]. From
these papers, it is now well known that the regularity assumption on the meshes
can be considerably weakened. However, all these references are mainly restricted
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to second order problems. For fourth order problems, the plate bending problem
for example, only some rectangular elements have been considered, see [15, 33, 29].
But as far as we know, up to now, there are no results for general anisotropic
triangular plate elements.

Triangular plate elements, especially nonconforming ones are very popular. Such
elements have more advantages over their rectangular counterparts since they can
be better adapted to complex boundaries. The main goal of this paper is to provide
error estimates of the well-known nonconforming Morley triangular element under
a weak angle condition.

The Morley element is particularly attractive for fourth order problems, because
of its simple structure and since it has low degrees of freedom. However, since
the continuity of Morley element is very weak (non-C0 element), even for regular
meshes, error analysis is not easy, see [30, 26, 34, 10, 37]. In this paper, by using
special properties of the shape function space of Morley element and Poincaré in-
equality (we refer to [12, 32]), we derive an explicit bound of its interpolation error
for arbitrary triangular meshes. As usual, the consistency error for plate bending
problems involves some boundary residual integrals. The standard arguments to
bound these terms make use of scaling arguments and trace theorems, thus the
regularity assumption on the mesh can not be avoided. Our essential idea in the
estimate of the consistency error is to transform some boundary integrals to some
element’s ones, while some approximation properties are still retained. To this end,
we firstly rearrange these nonconforming terms. Then motivated by the ideas from
[2], we derive an optimal estimate of the consistency error (cf. section 3 for details)
with the aid of the lowest order Raviart-Thomas interpolation operator [35]. Fur-
thermore, the optimal convergence rate of the rotation error (discrete H1-norm) is
also obtained for convex polygonal domains. The analysis carried out in this paper
is made for two dimensional Morley elements, the extension to three dimensional
Morley elements from [41] is also valid following the same types of arguments.

The outline of the paper is as follows. In the next section, after introducing the
nonconforming Morley element approximation of the plate bending problem, we de-
rive the interpolation error for arbitrary triangular meshes. In section 3, we mainly
discuss the moment error and angular error of Morley element on meshes satisfy-
ing the maximal angle condition. In order to verify the validity of our theoretical
analysis, some numerical experiments are carried out in section 4.

2. Discretization of the model problem and the interpolation error

We consider the plate bending problem:







△2u = f, in Ω,

u =
∂u

∂n
= 0, on ∂Ω,

(2.1)

where Ω denotes a plane polygonal domain, f ∈ L2(Ω) is the applied force, n =
(nx, ny) is the unit outward normal vector along the boundary ∂Ω. The related
variational form is :

{

Find u ∈ H2
0 (Ω), such that

a(u, v) = (f, v), ∀v ∈ H2
0 (Ω),

(2.2)


