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Abstract. A parabolic initial-boundary value problem with solutions display-

ing exponential layers is solved using layer-adapted meshes. The paper com-

bines finite elements in space, i.e., a pure Galerkin technique on a Shishkin

mesh, with some standard discretizations in time. We prove error estimates as

well for the θ-scheme as for discontinuous Galerkin in time.
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1. Introduction

We consider 1D unsteady convection-diffusion problems of the type

ut + Lu = f in Q = (0, 1)× (0, T ],(1a)

u(x, 0) = u0(x) for x ∈ [0, 1],(1b)

u(0, t) = u(1, t) = 0 for t ∈ (0, T ],(1c)

with f : (0, 1)× (0, T ] → R. Here the differential operator L is given by,

(2) Lu := −εuxx + bux + cu,

0 < ε << 1 is a small parameter and b, c : (0, 1) → R are sufficiently smooth with

(3) b(x) > β > 0 for x ∈ (0, 1).

By changing the dependent variable we may also assume that

(4) c− 1

2
bx ≥ c0 > 0 for x ∈ (0, 1).

Here β and c0 are constants. The exact solution of (1) has, in general, an exponen-
tial boundary layer at x = 1. Additionally, a discontinuity in the initial-boundary
data at the point x = 0, t = 0 would lead to an interior layer along the subchar-
acteristics through that point. We assume sufficient compatibility of the data to
exclude the existence of an interior layer, see [9].
In recent years many numerical methods have been developed to solve the corre-
sponding stationary problem on layer-adapted meshes, resulting in error estimates
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that are uniform with respect to the parameter ε, see [9]. For unsteady problems,
however, the situation is different.
Most existing papers deal with low order finite difference schemes, beginning with
[10] and the error estimate

(5) | u(xi, tj)− ui,j |≤ C(N−1 ln2N + τ)

for backward differencing in time and upwind differencing in space on a Shishkin
mesh. This result was extended in [5], [1] and [4]; in the last paper defect correction
in both space and time is applied to enhance the accuracy of the computed solution.
Concerning finite elements in space on a Shishkin mesh, we only know the pointwise
error estimates of [3] using space-time finite elements that are linear and continu-
ous in space but discontinuous in time, while additionally the streamline diffusion
stabilization in space-time is applied.
It is the aim of this paper to combine systematically finite elements in space (based
on a Galerkin technique or stabilization on a Shishkin mesh) with some standard
discretizations in time. First we shall study the θ-scheme which gives maximal
order 2 with respect to time. As a higher order scheme we decided to choose and
to analyze discontinuous Galerkin, because the analysis of higher order methods is
similar to lower order versions and discontinuous Galerkin offers the possibility to
investigate a posteriori error estimates based on standard ideas for Galerkin tech-
niques. In the numerical experiments we restricted ourselves to low order methods,
a careful numerical study of higher order methods is a task for subsequent studies.
For simplicity, we present the results for problems one-dimensional in space but we
apply only techniques which can be used in several dimensions as well.

2. The continuous problem

It is well known that for f ∈ L2(Q) and u0 ∈ L2(Ω) problem (1) has a unique
solution u ∈ L2(0, T ;H

1
0 (Ω)) with u′ ∈ L2(0, T ;H

−1(Ω)) (in our case we have
Ω = (0, 1)).
If we introduce the ε-weighted H1-norm defined by

(6) ‖v‖2ε := ε|v|21 + ‖v‖20 for v ∈ H1(Ω),

where ‖ · ‖0 defines the standard L2-norm and | · |1 the H1-seminorm respectively,
standard arguments lead us to the stability estimate (see [7], Theorem 11.1.1)

(7) sup
tǫ(0,T )

‖ u(t) ‖0 +(

∫ T

0

‖ u(t) ‖2ε dt)1/2 ≤ C ((

∫ T

0

‖ f(t) ‖20 dt)1/2+ ‖ u0 ‖0).

Therefore it is natural that we shall later prove error estimates in ”L∞(L2)”- and
”
√
εL2(H1)”-norms or their discrete analogues.

Remark 1. In [7], Proposition 11.1.1., we additionally can find an estimate for
maxtǫ(0,T ) ‖ u(t) ‖1. But, in our singularly perturbed case, it seems not possible to
follow the proof of Proposition 11.1.1 in such a way that the constants arising are
independent of ε (if moreover, ‖ u(t) ‖1 is replaced by ‖ u(t) ‖ε).�

Under certain compatibility conditions [9] there exists a classical solution of problem
(1).


