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A ROBUST FINITE DIFFERENCE METHOD

FOR A SINGULARLY PERTURBED

DEGENERATE PARABOLIC PROBLEM, PART I

MARTIN VISCOR AND MARTIN STYNES

This paper is dedicated to Grisha Shishkin, on the occasion of his 70th birthday

Abstract. A singularly perturbed degenerate parabolic problem in one space

dimension is considered. Bounds on derivatives of the solution are proved;

these bounds depend on the two data parameters that determine how singu-

larly perturbed and how degenerate the problem is. A tensor product mesh

is constructed that is equidistant in time and of Shishkin type in space. A

finite difference method on this mesh is proved to converge; the rate of con-

vergence obtained depends on the degeneracy parameter but is independent of

the singular perturbation parameter. Numerical results are presented.
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1. Introduction

Consider the singularly perturbed initial-boundary value problem

Lu(x, t) := εuxx(x, t)− xαut(x, t) = xαf(x, t) for (x, t) ∈ Ω,(1a)

subject to the Dirichlet initial and boundary conditions

u(0, t) = ϕL(t) for 0 < t ≤ T,(1b)

u(x, 0) = ϕ0(x) for 0 ≤ x ≤ 1,(1c)

u(1, t) = ϕR(t) for 0 < t ≤ T,(1d)

where Ω := (0, 1)× (0, T ] for some fixed T > 0, the small parameter ε ∈ (0, 1] and
α > 0 is a positive constant. The function f is smooth and the functions ϕ are
continuous; further hypotheses will be placed on them later.

The differential operator L of (1) degenerates at the boundary x = 0 of Ω̄ and
consequently its properties are not described by the standard theory of parabolic
partial differential equations, even for fixed ε > 0. Thus (1) suffers from two distinct
difficulties: its singularly perturbed nature (caused by the small parameter ε) and
its degenerate nature (induced by the coefficient xα of ut).

At the boundary x = 1 the solution u(x, t) displays a parabolic layer of width
O(ε1/2), as in the non-degenerate case, but a more complicated layer of width
O(ε1/(2+α)) appears at the boundary x = 0. See Figure 1.
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Shishkin [6] studied the initial-boundary problem

(2) Lu(x, t) = εα/(2+α)f1(x, t) + xαf2(x, t)

with the above Dirichlet data, where f1 and f2 are smooth. In a later paper [7]
we shall consider this more general problem, which requires many changes in the
analysis presented here. As mentioned in [6], problems like this arise when one
models the transfer of heat over a rectangle in a medium moving with velocity xα

along the x-axis and conducting heat only across the flow; see also [5].
To solve (2) numerically, in [6] the author constructs a tensor product mesh

with Nx points in the x direction and Nt points in the t direction. The x-mesh
is a modified Shishkin-type mesh with three transition points while the t-mesh is
equidistant. On this (x, t)-mesh a standard finite difference scheme is employed:
central differencing in the x direction with backward differencing in the t direction.
Writing uN for the numerical solution, it is shown in [6] that the maximum nodal
error in u− uN , measured uniformly in ε, are

O(N−1
x lnNx +N−1

t ) for 1 ≤ α ≤ 2,

O(N−1
x lnNx +N−4/(2+α)

x +N−1
t ) for α > 2,

but the presentation is very concise and consequently some arguments are unclear.
When (2) is replaced by the simpler problem (1), an inspection of [6] shows that

one of the mesh transition points can be omitted and the maximum nodal error in
u− uN , measured uniformly in ε, is now O(N−1

x lnNx +N−1
t ) for all α ≥ 1.

In the present paper we sharpen this result of [6] by showing that in fact for (1)
the maximum nodal error, measured uniformly in ε, is O(N−2

x (lnNx)
2 + N−1

t ) if
α = 1 or α ≥ 2. For completeness we also prove the bound O(N−1

x lnNx + N−1
t )

for 1 < α < 2. All our arguments are given in detail. Numerical results will be
presented to illustrate the accuracy of the numerical method.

Notation. We use C to denote a generic constant that is independent of ε and
of any mesh used. Thus C can take different values in different places, even in the
same calculation. Set S(Ω) = Ω̄ \ Ω; this is the set of points where the initial and
boundary conditions are prescribed. The space of continuous functions defined on
any measurable subset ω of Ω is C(ω) and the L∞(ω) norm on C(ω) is denoted by
‖ ·‖ω, except that when ω = Ω we simply write ‖ ·‖. For non-negative integers m, k
and measurable ω ⊂ Ω, a function g is said to lie in Cm,k(ω) if ∂i+jg/∂xi∂tj ∈ C(ω)
for 0 ≤ i ≤ m and 0 ≤ j ≤ k.

Finally, set

ν =
1

2 + α
and γ =

α

2 + α
.

Note that γ = αν and 2ν + γ = 1.

2. Properties of the solution u of (1)

By a standard argument [3, Section 2.1] one sees that the differential operator
L satisfies the usual maximum principle:

Lemma 1. Let Ψ ∈ C(Ω̄) ∩ C2,1(Ω) with Ψ ≥ 0 on S(Ω). If LΨ ≤ 0 on Ω then
Ψ ≥ 0 on Ω̄.

This lemma can be used to bound u via a barrier function Φ:

Lemma 2. Assume that u and Φ lie in C(Ω̄) ∩C2,1(Ω) with Φ ≥ |u| on S(Ω) and
LΦ ≤ −Lu on Ω. Then |u| ≤ Φ on Ω̄.

Proof. Apply Lemma 1 to the functions Φ± u to get Φ± u ≥ 0 on Ω̄. �


