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ANALYSIS OF AN ALTERNATING DIRECTION METHOD
APPLIED TO SINGULARLY PERTURBED

REACTION-DIFFUSION PROBLEMS

TORSTEN LINSS AND NIALL MADDEN

Abstract. We present an analysis of an Alternating Direction Implicit (ADI)

scheme for a linear, singularly perturbed reaction-diffusion equation. By pro-

viding an expression for the error that separates the temporal and spatial com-

ponents, we can use existing results for steady-state problems to give a suc-

cinct analysis for the time-dependent problem, and that generalizes for various

layer-adapted meshes. We report the results of numerical experiments that

support the theoretical findings. In addition, we provide a numerical compari-

son between the ADI and Euler techniques, as well details of the computational

advantage gained by parallelizing the algorithm.
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1. Introduction

We consider the problem of computing a satisfactory numerical solution to a
time-dependent singularly perturbed reaction-diffusion equation using an alternat-
ing direction finite difference method. The problem under consideration is

∂tu + Lu = f in Q := Ω× (0, T ], Ω = (0, 1)2,(1a)

where Lv := −ε2∆v + rv, f, r : Ω× (0, T ] → R, r ≥ %2 on Ω̄× [0, T ], % > 0, subject
to boundary and initial conditions

u = 0 on ∂Ω× (0, T ], u(·, 0) = 0 on Ω̄.(1b)

Solutions to (1) typically exhibit layers: narrow regions in which derivatives of the
solution are large.

Miller et al. [14] give a numerical analysis of a time-dependent reaction-diffusion
problem that is one-dimensional (in space), and show that the solution computed
on a Shishkin mesh will converge at a rate that is almost second-order. A more
general analysis based on Green’s functions is in [11]. See also [17, II.3.4.3] and
references provided there.

The analysis of numerical techniques for the two-dimensional steady-state ana-
logue of (1) has received recent attention: for example, Clavero et al. [2] provide an
analysis for a finite difference method on a piecewise uniform Shishkin mesh, while
Kellogg et al. [8] have analysed a finite difference method for various fitted meshes
used to solve coupled systems for steady reaction-diffusion problems. See also [17,
Remark II.2.10] and references given there.
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The studies of two-dimensional problems mentioned above all use spatial tensor
product meshes. When extending these techniques to time-dependent problems, it
is very natural to consider dimension splitting : at each time-step, one alternately
solves independent one dimensional problems in the x- and y-directions. This is
because it is typically much more efficient to solve, say, N tridiagonal systems of N
unknowns, than a banded system of N2 unknowns. Furthermore, the opportunities
for parallelization are easy to exploit.

Such Alternating Direction Implicit (ADI) scheme for classical problems are
presented in detail in, e.g., [12, 13, 18, 21]. Of primary interest to this study
is the work of Clavero et al. [5] who use an alternating directions technique to
semidiscretize (1) in time first. A sequence of one-dimension problems is obtained
which in turn are solved approximately by central differencing on a layer-adapted
piecewise uniform mesh—a so-called Shishkin mesh. The resulting scheme is shown
to be uniformly convergent with respect to the perturbation parameter ε with the
maximum nodal error bounded by C

(
τ + N−1

)
, where τ is the maximal time-step

size and N the number of mesh points used in each direction of the tensor product
spatial mesh, and C is a constant that is independent of ε, τ and N .

In this paper we shall present an alternative error analysis that—in a certain
sense—is simpler than that in [5]. In particular, when a Shishkin mesh is used, we
show that the nodal error is bounded by C

(
τ + N−2 ln2 N + εN−1

)
. Furthermore,

our approach makes it possible to deduce error bounds for other fitted meshes. For
example, we also show that if the graded mesh of Bakhvalov [1] is used, then the
error may be bounded as C

(
τ + N−2

)
.

ADI schemes have also been applied to other singularly perturbed problems such
as convection diffusion. For example in [4] the maximum-norm errors of a first-order
ADI method combined with simple upwinding in space are shown to be bounded
by C

(
τ + τ−1N−1 ln N

)
.

Outline. In §2 we describe the discretization of (1) both by the standard implicit
Euler method and the ADI approach. Bounds on derivatives of the solution are
summarized in §3, which is followed by a brief discussion of the mathematical
approach of [5], and then our own numerical analysis of the technique. This leads
to an expression of the error that depends on the analysis of the given method for
a steady-state problem. Then in §3.5 we can derive error bounds for particular
meshes.

The paper concludes with a report of detailed numerical experiments. For a
specially constructed test problem where the true solution is known, we investigate
separately the dependence of the error on the time and spatial discretization. We
also compare the accuracies of the ADI and Euler techniques. The paper concludes
by highlighting the speed-up that can be gained when the algorithm is implemented
on a parallel computer.

Notation. Given arbitrary meshes ωx : 0 = x0 < x1 < · · · < xN = 1 and ωy :
0 = y0 < y1 < · · · < yN = 1 in the x- and y-directions, one may construct the
tensor-product mesh ω := ωx × ωy. We write the mesh in the time variable as
ωt : 0 = t0 < t1 < · · · < tK = T . The mesh intervals are denoted

hi := xi − xi−1, kj := yj − yj−1, τn := tn − tn−1, τ := max
n=1,...,K

τn.

To simplify the notation we set gn
i,j := g(xi, yj , tn) for any function g ∈ C(Q̄).

Similarly, gn := g(·, ·, tn).


