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A POSTERIORI ERROR ESTIMATION FOR A SINGULARLY

PERTURBED PROBLEM WITH TWO SMALL PARAMETERS

TORSTEN LINSS

Abstract. A singularly perturbed two-point boundary-value problem of

reaction-convection-diffusion type is considered. The problem involves two

small parameters that give rise to two boundary layers of different widths.

The problem is solved using a streamline-diffusion FEM (SDFEM).

A robust a posteriori error estimate in the maximum norm is derived. It pro-

vides computable and guaranteed upper bounds for the discretisation error.

Numerical examples are given that illustrate the theoretical findings and ver-

ify the efficiency of the error estimator on a priori adapted meshes and in an

adaptive mesh movement algorithm.
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1. Introduction

Consider the reaction-convection-diffusion problem of finding u ∈ C2(0, 1) ∩
C[0, 1] such that

Lu := −εdu
′′ − εcbu

′ + cu = f in (0, 1) and u(0) = u(1) = 0,(1)

where εd ∈ (0, 1] and εc ∈ [0, 1] are small parameters, while b ∈ C1(0, 1) and
c, f ∈ C(0, 1) are assumed to satisfy

b ≥ 1, c ≥ 1 and εcb
′ + c ≥ 0 in (0, 1).(2)

The positivity of b and c is essential, while the third inequality merely provides a
maximal threshold value for εc for which the analysis in the paper is valid.

The standard weak formulation of (1) is: Find u ∈ H1
0 (0, 1) such that

a(u, v) := εd(u
′, v′)− εc(bu

′, v) + (cu, v) = (f, v) =: f(v) ∀ v ∈ H1
0 (0, 1).(1′)

The solution of (1) typically exhibits two boundary layers of different widths at
the two endpoints of the domain. Because of the presence of these layers standard
numerical methods fail to give accurate approximations. Unless a prohibitively
large number of mesh points is used, the layers are not resolved, and the rate of
convergence achieved by the method is far less than that obtain in the non-singularly
perturbed case.

The goal is to construct so-called robust or uniformly convergent methods. This
means that for a fixed number of mesh points, the accuracy and rate of conver-
gence is guaranteed, irrespective of the magnitude of the perturbation parameters.
Approaches for achieving this aim include the use of meshes that contain a con-
centration of points in the region of the boundary layers. The piecewise uniform
meshes of Shishkin [18], and the graded meshes of Bakhvalov [2] are examples of
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such. The construction of these meshes depends strongly on a priori information
of the solution and its derivatives.

Adapted numerical methods for (1) were first analysed by Shishkin and
Titov [22]. They consider an exponentially fitted finite difference scheme on a
uniform mesh. This method is shown to be convergent, uniformly in the parame-
ters εd and εc, in the discrete maximum norm. The order of convergence is at least
N−2/5, where N is the number of mesh intervals.

About 25 years after the work by Shishkin and Titov a number of authors started
to investigate standard numerical methods on special layer-adapted meshes. Linß
and Roos [17] studied a first-order upwinded difference scheme on a piecewise uni-
form Shishkin mesh. Uniform convergence of O

(

N−1 lnN
)

was established. A
theory for this method on general meshes was developed in [14].

Second-order upwind schemes were considered by Roos and Uzelac [21] (using
a SDFEM approach) and by Gracia et all. [8]. Both papers establish uniform

convergence of O
(

N−2 ln2 N
)

on Shishkin meshes.
While these a priori results establish the asymptotic behaviour of the error as the

mesh is refined, it cannot give guaranteed upper bounds for the error on a particular
mesh. The constant in the error bound, though independent of the perturbation
parameters, depends on the exact solution u which in turn is unknown.

The main contribution of the present study is in establishing a posteriori error
bounds which provide upper bounds on the error of the SDFEM. These days, a pos-
teriori error estimates for classical problems, i.e. problems that are not singularly
perturbed, are well established, see for example the monographs [1] and [23]. Re-
sults are also available for the SDFEM applied to convection-diffusion problems [24].
All these analyses are set in an L2- and energy-norm framework. However, for (1)
these norms fail to capture the layers. Therefore, we are interested in maximum-
norm error bounds.

For singularly perturbed problems, a posteriori error analyses in the maxi-
mum norm have been pioneered by Kopteva both for convection-diffusion problems
in 1D [10] and for reaction-diffusion problems in 1-3D [11, 12, 7]. In the present
paper, a posteriori error bounds for a single equation with two independently small
parameters are derived for the first time. In a certain sense it generalises the 1D
results by Kopteva for both reaction-diffusion (εc = 0) and convection-diffusion
(εc = 1).

Outline. The paper is organised as follows. In § 2 we study properties of the
continuous problem (1). In particular bounds for the Greens function associated
with L are derived that are essential in the later error analysis. The SDFEM
for (1′) is introduced in § 3, while § 4 is devoted to its a posteriori error analysis.
An adaptive mesh movement algorithm is adapted from the literature in § 5. The
article closes with results of some numerical experiments.

Notation. Throughout C denotes a generic positive constant that is indepen-
dent of the parameters εd and εc and of N , the number of mesh points. We use
‖ · ‖D to denote the norm in L∞(D). When D = (0, 1) we drop the D from the
notation.

2. Properties of the continuous problem

The solution of (1) and its Green’s function can be described by means of the
two roots of the characteristic equation

−εdλ(x)
2 − εcb(x)λ(x) + c(x) = 0.(3)


