
INTERNATIONAL JOURNAL OF c© 2010 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 7, Number 3, Pages 462–476
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Abstract. Continuing an earlier work in space dimension one, the aim of this

article is to present, in space dimension two, a novel method to approximate

stiff problems using a combination of (relatively easy) analytical methods and

finite volume discretization. The stiffness is caused by a small parameter in

the equation which introduces ordinary and corner boundary layers along the

boundaries of a two-dimensional rectangle domain. Incorporating in the fi-

nite volume space the boundary layer correctors, which are explicitly found by

analysis, the boundary layer singularities are absorbed and thus uniform meshes

can be preferably used. Using the central difference scheme at the volume in-

terfaces, the proposed scheme finally appears to be an efficient second-order

accurate one.
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1. Introduction

We consider convection-dominated problems in a two-dimensional domain:
{

div(−ε∇uε − buε) = f in Ω,
uε = 0 on ∂Ω,

(1.1)

where Ω = (0, 1) × (0, 1) ⊂ R
2, div(b) = 0, b = (b1, b2)

T with b1, b2 ≥ δ > 0 and
ε > 0, and b1 = b1(x, y), b2 = b2(x, y) and f = f(x, y) are sufficiently smooth.
When ε is small, e.g. 0 < ε << δ, the solutions uε of Problem (1.1) possess
boundary layers at the outflow boundaries, that is, x = 0, y = 0. For the analysis
of boundary layers problems the reader is referred to e.g. [4], [5], [8], [9], [11], [21],
[23], [25] and [27], and for the numerical approach to e.g. [24], [7], [12], [13], [15]
- [19], [22] and [26]. Notice that the boundary ∂Ω of Ω is nowhere characteristic.
Since div(b) = 0, we also note that div(−ε∇u−bu) = −ε∆u−b ·∇u and the well-
posedness of Problem (1.1) in the Sobolev space H1

0 (Ω) is standard, thanks to the
Lax-Milgram theorem. Furthermore, we can verify the following norm estimates
for the solutions uε.

Lemma 1.1. Let f = f1+ f2+ f3. There exists a positive constant κ, independent
of ε, such that







|uε|L2(Ω) ≤ κNε(f),

|uε|H1(Ω) ≤ κε−
1
2Nε(f),

|uε|H2(Ω) ≤ κε−
3
2Nε(f),

(1.2)
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where Nε(f) = |f1|L2(Ω) + ε−
1
2 |x(L1 − x)f2|L2(Ω) + ε−

1
2 |y(L2 − y)f3|L2(Ω).

Proof. To estimate uε = u, we write u = e−xv and then we have
{

−ε∆v − div(bv) + (b1 − ε)v + 2εvx = exf in Ω,
v = 0 on ∂Ω.

(1.3)

We first observe that

−

∫

Ω

div(bv)v = −

∫

Ω

(b · ∇v)v =

∫

Ω

div(b)
v2

2
= 0.(1.4)

Multiplying then (1.3)1 by v and integrating over Ω, we find

ε|v|2H1 + (δ − ε)|v|2L2 ≤ κ|x(L1 − x)f2|L2 |(
1

x
+

1

L1 − x
)v|L2

+ κ|y(L2 − y)f3|L2 |(
1

y
+

1

L2 − y
)v|L2 + κ|f1|L2 |v|L2

≤ κ(|f1|L2 |v|L2 + |x(L1 − x)f2|L2 |v|H1 + |y(L2 − y)f3|L2 |v|H1 ).

(1.5)

In (1.5) we have used the Hardy inequality (see e.g. [19], [10]) in the form:
∣

∣

∣

u

x

∣

∣

∣

L2(Ω)
≤ κ|u|H1(Ω), for u = 0 at x = 0.(1.6)

The first two inequalities (1.2) follow promptly from (1.5). Then the H2 regularity
and the H2 estimate immediately follow from (1.1). �

Convection-dominated problems appear in many applications where convection
plays an important role, as for instance weather-forecasting, oceanography, trans-
port of contaminant, etc. (see e.g. [3]). In this article we build a novel method
to approximate, numerically, two-dimensional convection-dominated problems and
via numerical examples the new numerical scheme is proved efficient and accurate.

Before we proceed we analyze below the stiffness of the solutions due to the small
parameter ε.

2. Singular perturbation analysis

In general, functions like uε can be decomposed into a relatively slow (smooth)
part us and a fast part uf , i.e. uε = us + uf . Using standard classical numer-
ical methods the slow part us can be easily approximated, but the fast part uf

produces large approximation errors due to the stiff gradients. Introducing the
so-called correctors which appear below we will resolve such issues for the problem
under consideration. The singular perturbation analysis provides the two impor-
tant settings. One is to locate the stiff parts, namely the boundary layers; we will
modify them and construct appropriate forms of uf which absorb the boundary
layer singularities. The other is to impose the boundary conditions for the slow
parts us which are close to the limit solutions.

Writing (1.1) in a non-divergence form we first construct the limit solution of uε

in (1.1), i.e. when ε = 0. That is, we find

b · ∇u0 = f in Ω,(2.1)

and then impose the zero boundary conditions at the inflows, i.e. x = 1 or y = 1.
This choice of the boundary condition for (2.1) will be justified a posteriori by
our convergence result. The existence and uniqueness of a solution u0 ∈ L2(Ω) of
(2.1) satisfying the zero boundary conditions at the inflows is well-known. In what
follows we will assume that u0 is as regular as needed. Such regularity results may


