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INTERIOR LAYERS IN A REACTION–DIFFUSION EQUATION
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Abstract. In this paper a problem arising in the modelling of semiconductor

devices motivates the study of singularly perturbed differential equations of

reaction–diffusion type with discontinuous data. The solutions of such prob-

lems typically contain interior layers where the gradient of the solution changes

rapidly. Parameter–uniform methods based on piecewise–uniform Shishkin

meshes are constructed and analysed for such problems. Numerical results

are presented to support the theoretical results and to illustrate the benefits

of using a piecewise–uniform Shishkin mesh over the use of uniform meshes in

the simulation of a simple semiconductor device.
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1. Introduction

The solutions of singularly perturbed differential equations with smooth data ex-
hibit steep gradients in narrow layer regions adjacent to part or all of the boundary
of the domain. When the data for the problem is not smooth, additional interior
layers can appear in the solutions of these singularly perturbed problems. There
are two broad classes of interest within singularly perturbed problems: problems
of reaction–diffusion type and problems of convection–diffusion type. In this pa-
per, we examine numerical methods for singularly perturbed ordinary differential
equations of reaction–diffusion type with non-smooth data. Our interest is in the
design and analysis of parameter–uniform numerical methods, for which the error
constants in the associated asymptotic error bounds are independent of any singular
perturbation parameters.

Farrell et al. [7] constructed and analysed a parameter–uniform method for a
reaction–diffusion problem of the form: find u ∈ C1(0, 1) such that

(1.1) − (εu′)′ + r(x)u = f(x), x ∈ (0, 1) \ {d}, u(0), u(1) given, r(x) ≥ 0,

where r, f were allowed to be discontinuous at a point d ∈ (0, 1) and ε was a positive
small parameter. The method consisted of a standard difference operator combined
with an appropriate piecewise–uniform Shishkin [6] mesh and it was shown in [7]
to be essentially a first order parameter–uniform method. By using a different
discretization at the interface, Roos and Zarin [11] analysed a second order method
for the case when the source term f is discontinuous and ε ≤ CN−1. A first order
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numerical method was analysed in [8] for a nonlinear version of (1.1), where r(x)u
is replaced by r(u)u and the source term f is allowed to be possibly discontinuous
at some point d. Two dimensional versions of problem (1.1) with point sources were
considered in [3, 2] where the parameter uniform convergence of numerical methods
incorporating Shishkin meshes was examined.

In this paper, we return to the one dimensional problem (1.1) with possible point
sources included, but we add some new features into the problem class. Firstly, we
allow the diffusion coefficient ε to be variable, ε = ε(x), and to be possibly dis-
continuous. Such discontinuous diffusion coefficients can arise, for example, in the
modelling of phase transitions. Moreover, this means that the resulting problem is a
two parameter singularly perturbed problem. In the context of parameter–uniform
methods, this forces one to ensure that the convergence of the numerical approxi-
mations is independent of both singular perturbation parameters. In addition, we
also consider the effect of interfacing a reaction–diffusion equation with an equation
with no reactive term (r ≡ 0) on one side of the interface x = d. The examination
of this second class of problems was motivated by a modelling problem from the
area of semiconductor devices. The resulting interior layer in the solution can be
weaker than in the case of (1.1), but we see below that it is still desirable to use
an appropriate fitted mesh in order to achieve parameter-uniform convergence. In
§2,3,4, a priori bounds on the continuous solutions are established, which are used
in §5 to construct an appropriate fitted mesh. Combining this fitted mesh with a
finite difference operator in conservative form, it is shown in §6 that the resulting
numerical method is essentially a globally second order parameter–uniform numeri-
cal method [6] for both of the problem classes being considered. Parameter–uniform
convergence estimates for the appropriately scaled fluxes are also given. Numerical
results in §7 are presented to support the theoretical results.

In §8, we consider a class of linear singularly perturbed ordinary differential
equations of reaction–diffusion type with non–smooth data, associated with a non-
linear singularly perturbed ordinary differential equation arising in the modelling
of a Metal Oxide Semiconductor (MOS) capacitor. To determine the capacitance
of this nonlinear device over a practical range of applied voltages, it is necessary
to approximate the scaled derivative of the solution of the associated linear singu-
larly perturbed problems over a wide range of the singular perturbation parameter.
Parameter–uniform methods are designed for this purpose. At the end of the pa-
per, we observe an improvement in the accuracy of the capacitance when a suitably
fitted mesh is employed within the numerical algorithm.

In passing we note that the piecewise–uniform mesh used in this paper is only
one of a family of possible layer–adapted meshes [10] which could be used for this
singularly perturbed problem. In particular, it is well established that Bakhvalov
[1] meshes outperform piecewise-uniform meshes by typically obtaining parameter–
uniform convergence orders ofO(N−p) as opposed toO((N−1 lnN)p) for the piecewise–
uniform meshes. Likewise, in the case of ordinary differential equations, many
possible analytical approaches exist [10] to establish these theoretical results. In
this paper, we choose the classical analytical approach of stability and consistency,
suitably modified for singularly perturbed problems, to establish our theoretical
results. The main reason for this choice and, also, for our choice of a piecewise–
uniform mesh, is that this same approach has been extended to a wide class of
singularly perturbed partial differential equations [13].


