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ASSOCIATING A LIMIT PERTURBATION MODEL IN 3D WITH
REDUCED MESHES FOR SIMULATIONS OF THE
LOCALIZATION OF CERTAIN ELECTROMAGNETIC
INHOMOGENEITIES
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Abstract. Simulations of the localization of certain small electromagnetic
inhomogeneities, in a three-dimensional bounded domain, are performed by
making use of a framework recently introduced by the author and of a non-
standard discretization process of this domain. This framework is based on
a limit model in electric field and on the combination of a limit perturbation
model in the tangential boundary trace of the curl of the electric field, with
a Current Projection method or an Inverse Fourier method. As opposed to
our recent paper relating to this framework and to experiments requiring the
usual discretization process of the domain, inhomogeneities that are one order

of magnitude smaller are numerically localized here.
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1. Introduction

Several recent works, related to Electrical Impedance Tomography, deal with
the localization of inhomogeneities that are of small diameters. These works (see
e.g. [1,2, 3,4, 5,10, 12, 18]) present tools and numerical methods for solving the
localization problem in diverse settings (conductivity inhomogeneities, elastic inho-
mogeneities, ...). For the localization of a finite number of small electromagnetic
inhomogeneities contained in a three-dimensional bounded domain, from a finite
number of boundary measurements, H. Ammari, M. Vogelius & D. Volkov propose
in [6] a practical tool. The inverse problem underlying the localization is based in
[6] on the time-harmonic Maxwell equations, and the proposed tool is an asymptotic
formula for perturbations in the electromagnetic fields, due to the presence of such
inhomogeneities. It allows one in particular to evaluate boundary measurements
of “voltage” type that are then used as data of the inversion algorithm — aimed
at locating the inhomogeneities. This tool has been recently considered by M.
Asch & S.M. Mefire [8, 9] for numerically performing the localization of such inho-
mogeneities in various experimental contexts (consideration of diverse frequencies,
consideration of inhomogeneities of different smallness, experiments with diverse
inversion algorithms).
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In the numerical investigations of [8], where the time-harmonic Maxwell equa-
tions and the formula for perturbations are considered in electric field, it is however
observed that such inhomogeneities cannot be localized from this formula in the
context of very low frequencies. This observation led to an essential question, that
of knowing whether these inhomogeneities can be localized from the limit model of
equations and the limit perturbation model obtained by letting the frequency van-
ish in the time-harmonic Maxwell equations in electric field and in the formula for
perturbations in the tangential trace of the curl of the electric field allowing one to
evaluate boundary measurements. This question has been recently answered by the
author in [15]. The numerical investigations performed in [15] indicate that these
limit models lead to the localization of inhomogeneities that are not purely electric.
However, the inhomogeneities considered in [15] are not sufficiently small in such a
way that we can assimilate the geometric configurations of numerical experiments
of [15] to concrete configurations from a physical point of view. Typically, these
experiments required, in particular, for the numerical evaluation of measurements,
a finite element method based on “full” conforming meshes of the domain whereas,
when the domain contains very small inhomogeneities, such meshes (that take into
account implicitly the conforming discretization of each imperfection) prohibit sim-
ulations of the localization as far as memory storage and CPU time are concerned.
In fact, in presence of such inhomogeneities, such a mesh, deriving from the usual
triangulation process of the domain, leads to a too large number of unknowns of
the discrete system (associated with the discrete formulation in electric field) that
must be solved for each evaluation of measurement; especially as the domain is
three-dimensional and as mixed finite elements are used.

As opposed to [15], where we were limited in numerical investigations by the
smallness of the inhomogeneities, configurations of much smaller inhomogeneities
will be treated here.

In this work, the simulations of the localization will be based on the afore-
mentioned limit perturbation model, and on finite element meshes called, as in
[9], the reduced meshes. Such a mesh of the domain, aimed at overcoming the
drawbacks inherent in full meshes, represents a conforming mesh whose size is bigger
than the largest of the diameters of the inhomogeneities present in the domain,
and is (explicitly) combined with integration meshes for taking into account the
characteristics of these small inhomogeneities.

This work is subdivided into five sections. In Section 2, we introduce from [15]
the limit model in electric field and the limit perturbation model that allows us,
in particular, to evaluate boundary measurements. We present in Section 3 the
(direct) computation of the electric field required in the evaluation of each mea-
surement. Typically, this computation is based on a discrete formulation resulting
from the combination of a reduced mesh, with Nédélec’s edge elements and nodal
finite elements. As this formulation provides a rectangular matrix system, we are
concerned with a least squares approach for solving the system and therefore deter-
mining the discrete electric field. Section 4 deals with extensive simulations, making
then use of reduced meshes, and considering two localization procedures: the one
based on a Current Projection method (for the single inhomogeneity context) and
the one deriving from an Inverse Fourier method (for the multiple inhomogeneities
context). We describe localization results obtained, in various contexts, with each
one of these procedures and also compare some results in the single inhomogeneity
context. Some conclusions are reported in Section 5.



