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CELL CENTERED FINITE VOLUME METHODS

USING TAYLOR SERIES EXPANSION SCHEME

WITHOUT FICTITIOUS DOMAINS

GUNG-MIN GIE AND ROGER TEMAM

Abstract. The goal of this article is to study the stability and the conver-

gence of cell-centered finite volumes (FV) in a domain Ω = (0, 1)× (0, 1) ⊂ R2

with non-uniform rectangular control volumes. The discrete FV derivatives

are obtained using the Taylor Series Expansion Scheme (TSES), (see [4] and

[10]), which is valid for any quadrilateral mesh. Instead of using compactness

arguments, the convergence of the FV method is obtained by comparing the

FV method to the associated finite differences (FD) scheme. As an applica-

tion, using the FV discretizations, convergence results are proved for elliptic

equations with Dirichlet boundary condition.
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1. Introduction.

Finite volumes (FV) are widely used both in Engineering (see e.g. [4], [10] and
[13]) and in Geophysical Fluid Dynamics (GFD) (see e.g. [11], [1] and [8]), because
of their local conservation property on each control volume. From the mathematical
and numerical analysis points of view, these methods are well studied for their
stability and convergence, using a variety of methods to compute the fluxes (see
e.g. [5], [6], [7], [9] and [14]). On a control volume in R2, one simple way to compute
the flux along a boundary is to start with the difference of the given data at two cell
centers divided by the length of the vector connecting those cell centers and then,
taking the flux as the product of that quantity and the length of the boundary,
which is the analog of the one dimensional case (see [5], [6], [7] and [9]). However
this is not the best choice when the unit normal on the boundary is not parallel to
the vector connecting the two cell centers; to deal with complicated meshes in R2,
more efficient ways to compute the fluxes are needed. In this article, we consider
the cell centered FV by Taylor Series Expansion Scheme (TSES), which permits to
compute the fluxes on a general quadrilateral mesh in R2 (see [4] and [10]), and
apply them to quasi- (but, non-) uniform meshes on Ω; we also intend to consider
more general meshes in the future. For the mathematical analysis of the FV method,
one specific difficulty is due to the “weak consistency” of FV. Indeed the companion
discrete FV derivative arising in the discrete integration by parts does not usually
converge strongly to the corresponding derivative of the limit function (see e.g. [6]
or [9]). To overcome this difficulty, discrete compactness arguments have been used

Received by the editors March 15, 2009.

2000 Mathematics Subject Classification. 65N12, 65N25, 76M12, 76M20.
This work was supported in part by NSF Grant DMS 0604235, and by the Research Fund of

Indiana University.

1



2 G. GIE AND R. TEMAM

as in e.g. [6]. But here instead we consider the finite differences (FD) associated
with the FV and compare the FV and FD spaces by defining a map between them.
The convergence of the FV method is then inferred.

Our work is organized as follows. In Section 2, we describe the cell centered FV
setting by TSES without using fictitious domains, but using instead “flat” domains
at the boundary. In Section 3, we introduce an external approximation of H1

0 (Ω)
using FV spaces Vh (see [3] and [15]), and show that the truncation error between
a function in H1

0 (Ω) and its projection onto the FV space Vh tends to zero as the
mesh sizes decrease. Due to the weak consistency of the FV, we are not able at
this point to show that the external approximation of H1

0 (Ω) by the FV spaces is
convergent. Instead, in Section 4, we present the FD method associated with this
FV method and prove the stability and convergence of the external approximation

of H1
0 (Ω) by the FD spaces Ṽh in Section 5. In Section 6, comparing the FV and FD

spaces and thanks to the convergence of the FD, we obtain the convergence of the
FV in the end. Finally, in Section 7, as an application, we demonstrate how one can
use the FV method to approximate the solution of some typical elliptic equations
with Dirichlet boundary condition, and, using our results, show the convergence of
such an approximation via finite volumes to the solution of the original problem.

2. The Finite Volume Setting.

The domain is Ω = (0, 1)×(0, 1) in R2. We set x0 = x 1
2
= 0, xM+ 1

2
= xM+1 = 1,

y0 = y 1
2
= 0, yN+ 1

2
= yN+1 = 1 and we choose the nodal points xi+ 1

2
, yj+ 1

2
for

1 ≤ i ≤ M − 1, 1 ≤ j ≤ N − 1,

(2.1)
0 = (x0 =)x 1

2
< x 3

2
< · · · < xM+ 1

2
(= xM+1) = 1,

0 = (y0 =)y 1
2
< y 3

2
< · · · < yN+ 1

2
(= yN+1) = 1.

We define the control volumes on Ω which appear on Fig. 1,

(2.2) Ki,j =


(xi− 1

2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
), 1 ≤ i ≤ M, 1 ≤ j ≤ N,

(xi− 1
2
, xi+ 1

2
)× {yj}, 1 ≤ i ≤ M, j = 0, N + 1,

{xi} × (yj− 1
2
, yj+ 1

2
), i = 0,M + 1, 1 ≤ j ≤ N.

Here, we have chosen flat control volumes at the boundary to handle and enforce
the boundary conditions.
For 1 ≤ i ≤ M , 1 ≤ j ≤ N , the center of Ki,j is

(2.3) (xi, yj) =
(xi− 1

2
+ xi+ 1

2

2
,
yj− 1

2
+ yj+ 1

2

2

)
.

We set

(2.4)
hi = xi+ 1

2
− xi− 1

2
, kj = yj+ 1

2
− yj− 1

2
, 1 ≤ i ≤ M, 1 ≤ j ≤ N,

hi+ 1
2
= xi+1 − xi, kj+ 1

2
= yj+1 − yj , 0 ≤ i ≤ M, 0 ≤ j ≤ N,

and, for convenience, we also set

(2.5) h0 = hM+1 = k0 = kN+1 = 0.

Then we infer from (2.3)-(2.5) that

(2.6) hi+ 1
2
=

1

2
(hi + hi+1) , kj+ 1

2
=

1

2
(kj + kj+1) , 0 ≤ i ≤ M, 0 ≤ j ≤ N,

and write the nodal points xi+ 1
2
, yj+ 1

2
as proper weighted averages of the points

xi, xi+1, yj and yj+1 (see Fig. 2):


