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AN UNCONDITIONALLY STABLE SECOND ORDER METHOD
FOR THE LUO-RUDY 1 MODEL USED IN SIMULATIONS OF
DEFIBRILLATION

MONICA HANSLIEN, ROBERT ARTEBRANT, JOAKIM SUNDNES AND ASLAK TVEITO

Abstract. Simulations of cardiac defibrillation are associated with consider-
able numerical challenges. The cell models have traditionally been discretized
by first order explicit schemes, which are associated with severe stability issues.
The sharp transition layers in the solution call for stable and efficient solvers.
We propose a second order accurate numerical method for the Luo-Rudy phase
1 model of electrical activity in a cardiac cell, which provides sequential update
of each governing ODE. An a priori estimate for the scheme is given, show-
ing that the bounds of the variables typically observed during electric shocks
constitute an invariant region for the system, regardless of the time step cho-
sen. Thus the choice of time step is left as a matter of accuracy. Conclusively,
we demonstrate the theoretical result by some numerical examples, illustrating

second order convergence for the Luo-Rudy 1 model.
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1. Introduction

Computer simulations of cardiac electrophysiology have been established as a
helpful tool, particularly in the study of defibrillation where it is hard to observe
what is going on through in vitro experiments. The simulations are typically based
on a system of two PDEs, named the bidomain model of electrical activity in the
heart. Normally these equations are coupled to a set of ODEs, which serve to
describe the electrochemistry of a single cardiac cell. There is an ever increasing
need for efficient numerical methods as the mathematical models tend to expand in
size and complexity along with a higher level of realism. However, older cell models
such as the Beeler-Reuter model [1] and the Luo-Rudy phase 1 (LR1) model [8]
are also commonly used in simulations that involve electric shocks, and serve to
describe the electrophysiological membrane dynamics in a fairly realistic way.

Traditional numerical methods used in simulations of cardiac defibrillation are
based on forward Euler integrators with poor stability properties. These stability
issues are a consequence of the high values that the transmembrane potential under-
takes when the electric shock is on, as addressed in [4]. In that study, a numerical
method for the LR1 model of order O(At) was presented. This scheme was proved
to be unconditionally stable, leaving the choice of time step as a matter of accu-
racy. However, the extremely sharp transition layers in the solution present during
strong electric shocks put particularly high demands on the accuracy and stability
of the solvers. Also, in the strive for realistic simulations of defibrillation one would
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need to solve the equations on 3D geometries with relatively high resolution. Due
to these challenges, a numerical method that admits second order accuracy would
save considerable computation time. When we are to solve the coupled system
of ODEs and PDEs, it is possible to use an operator splitting technique in time
which is of order O(At?), see [10] and [13]. Therefore, it would be desirable for the
ODE solver to preserve the level of accuracy. In the present paper, we propose a
second order accurate method for the LR1 model. The numerical scheme is based
on a quasi-implicit method, which makes it possible to solve each ODE in separate,
where a method of Rush-Larsen type [11] is used for integration of the resulting
linear equation, together with a Lobatto IIIC method for the governing equation
of the scaled calcium concentration. A maximum principle for this scheme reveals
that the numerical solutions yield no numerical instabilities, regardless of the time-
step chosen. Thus we have a stable numerical method for the ODE system with
the same level of accuracy as can be obtained at the PDE level.

The rest of the paper is organised as follows. In Section 2 we present the
mathematical model under consideration, and in Section 3 we derive the numerical
method. A priori bounds of this scheme are given in Section 4, before we show
some simulation results in Section 5.

2. Model equations

Propagation of an electrical pulse in the heart can be formulated mathematically
by the bidomain model, and is thoroughly described in [5, 14]. The cardiac tissue is
divided into extracellular (e) and intracellular (i) domains, on which the electrical
potential is represented by w, and wu;, respectively. We may then write the trans-
membrane potential in terms of these two quantities as v = u; — u., measured in
mV. Moreover, M; and M, are conductivity tensors for the intra- and extracellular
space, and s is a model dependent state vector. The complete system reads

Os
5= P(s,v), (1)
% + Lion(v,8) =V - (M;Vv) + V- (M;Vue), r € H, (2)
0=V-(M;Vv)+ V- ((M; + M:)Vu,), r € H, (3)

where we have denoted by H our computational domain.

In the simulations we use the boundary conditions presented in [3] wherever the
heart is under normal electrophysiological conditions, whereas we incorporate the
electric shock as Dirichlet conditions during some time interval ¢ € [t1,t2]. The
shock is placed on the heart surface, but one could easily extend the model to
include torso simulations with the shock delivered through external electrode pads
on the surface of the body. For an outer normal vector ny we set

ny - M;V(ue +v) =0, z € 0Hq, (
ng - MiV(ue+v) =0, © € 0Hy UOH3, t <ty or t > tg, (5
Ue = U1, T € OHo, t1 <t < g, (
Ue = U, T € OH3, t1 <t < tg, (
where the values of the shock are given by u; (cathode) and wus (anode).
Equation (1) is a system of ODEs which describes electrical kinetics of a single

cell, and in the present study we let this represent the Luo-Rudy phase 1 model [8].
This cell model comprises eight variables, including the transmembrane potential v,



