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FRONT TRACKING ALGORITHM FOR THE
LIGHTHILL-WHITHAM-RICHARDS TRAFFIC FLOW MODEL

WITH A PIECEWISE QUADRATIC, CONTINUOUS,
NON-SMOOTH, AND NON-CONCAVE FUNDAMENTAL

DIAGRAM
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Abstract. We use a front tracking algorithm to explicitly construct entropy solutions for the
Lighthill-Whitham-Richards traffic flow model with a flow-density relationship that is piecewise
quadratic, continuous, non-smooth, and non-concave. The solution is exact if the initial condition
is piecewise linear and the boundary conditions are piecewise constant. The algorithm serves as
a fast and accurate solution tool for the prediction of spatio-temporal traffic conditions and as a
diagnostic tool for testing the performance of numerical schemes. Numerical examples are used to
illustrate the effectiveness and efficiency of the proposed method relative to numerical solutions
that are obtained using a fifth-order weighted essentially non-oscillatory scheme.
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1. INTRODUCTION

Lighthill and Whitham [23] provided one of the first published theories of the
macroscopic modeling of highway traffic flow. Their theory was based on two
relationships: a continuity equation and the fundamental relationship between the
flow and density of a traffic stream. The continuity equation can easily be derived
by considering the conservation of vehicles between any two locations on a road,
which is why it is often called a conservation equation. As an assumed speed-density
relationship is needed to solve and apply the continuity equation for traffic flow,
studies on the relationships between the fundamental traffic stream variables are
vital, and have been provided throughout the history of traffic flow study. With
the continuity equation, a speed-density relationship, and the initial and boundary
conditions of the traffic stream, the density at any location along a road can be
determined. Richards [30] independently proposed the same continuum approach,
albeit in a slightly different form. The key difference is that Richards focused on the
derivation of shock waves with respect to density, whereas Lighthill and Whitham
considered the same from the perspective of disruptions to traffic flow. Another
difference between the two methods is that Richards adopted a linear speed-density
relationship, whereas Lighthill and Whitham used a more general speed-density
relationship. Because of the nearly simultaneous and independent development of
the theory, the model has become known in the literature as the LWR model.

The LWR model, as a scalar hyperbolic conservation law, can be solved by ap-
proximating the fundamental diagram (or flux function) as a piecewise linear func-
tion [3], in which the solution of the Riemann problem is a step function (piecewise
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constants). If the initial data falls within the class of step functions, then an an-
alytical solution of the Cauchy problem can be constructed by the superposition
of simple Riemann problems. The solution will always remain piecewise constant,
and will therefore always be within the same class of functions, because all wave
interactions lead to new Riemann problems. By solving the Riemann problems that
arise each time two or more waves interact, a global solution can be established.
In the general case, approximating the flux function by a sequence of piecewise
linear functions and the initial data by a sequence of step functions gives a com-
pact sequence of approximate solutions that converge to the solution of the Cauchy
problem. Similarly, Newell [27–29] assumed a triangular or trapezoidal shape of
the fundamental diagram and proposed a simple graphical procedure to derive the
analytical solution to the LWR model on incident detection using the concept of cu-
mulative flow. These studies unintentionally share the same rationale as Dafermos’
method. More recently, and inspired by Dafermos, Henn [6, 7] proposed a solution
algorithm for the LWR model known as the wave tracking scheme that is based
both on the piecewise linear approximation of the fundamental flow-density rela-
tionship and on an explicit tracking of waves, and further implemented the scheme
to evaluate the impact of incidents on the road.

Lucier [26] extended Dafermos’ method to approximate the flux function us-
ing a parabolic spline approximation, in which the piecewise quadratic functions
are continuously differentiable with discontinuous second derivatives at the break-
points. Holden et al. [8, 9] enhanced Dafermos’ method and showed that even in
infinite time, there are only a finite number of constant states. They also proved
that the construction is well defined for non-convex flux functions. They called
the method front tracking – front referring to the discontinuities and tracking to
the process of computing collisions and resolving interactions. Front tracking has
proved to be a very robust numerical method for scalar, one-dimensional conser-
vation laws. Kunick [21] proved an explicit representation formula for the solution
of a one-dimensional hyperbolic conservation law with a non-convex flux function
but monotone initial data based on the polygonal method of Dafermos. Other
developments and applications of the front tracking method can also be found
in [1, 11,14–17].

Unaware of the earlier development of the front tracking method [10], Wong
and Wong [35] rediscovered the method of Lucier [26] for solving a scalar hyper-
bolic conservation law, and determined the formation and propagation of shocks
on a homogeneous highway subject to general boundary conditions assuming a lin-
ear speed-density relationship (or parabolic flux function). The method of Wong
and Wong [35] can therefore be considered to be a special case of the method of
Lucier [26] in which the solution is exact if the fundamental diagram is a parabolic
flux function, the initial condition is piecewise linear, and the boundary conditions
are piecewise constant. In both Wong and Wong [35] and Lucier [26], explicit ex-
pressions that describe the relationship between the density, space, and time of dif-
ferent scenarios (characteristics, fan, and shock) were derived to allow the evolution
of traffic density in space and time to be precisely determined, although Lucier’s
focus was on the theoretical proof of the convergence rate of the algorithm when a
general flux function is approximated by a number of piecewise quadratic functions.
More recently, Lu et al. [25] proposed an improved front tracking algorithm that
adopts a piecewise quadratic, continuous, and concave fundamental diagram. As
their algorithm does not require the piecewise quadratic function to be continu-
ously differentiable at the junction points, they improved on the method proposed


