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Abstract. In this paper, we propose a dimension splitting method for Navier-

Stokes equations(NSEs). The main idea is as follows. The domain of flow in

3D is decomposed into several thin layers. In each layer, The 3D NSEs can

be represented as the sum of a membrane operator and a normal (bending)

operator on the boundary of layer. And The Euler central difference is used

to approximate the bending operator. When restricting the 3D NSEs on the

boundary in each layer, we obtain a series of two dimensional-three components

NSEs (called as 2D-3C NSEs). Then we construct an approximate solution of

3D NSES by solutions of those 2D-3C NSEs.
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1. Introduction

In [1, 2], the authors studied two dimensional flow on the stream surface, de-
rived a nonlinear boundary value problem satisfied by stream function defined on
the stream surface, and studied its finite element approximation. In [3, 4], Kaitai
Li propose a dimensional splitting method for the linearly elastic shell based on
differential geometry and tensor analysis. In this paper we will use classical tensor
calculation to propose a new method , called “dimensional splitting method” for
3D rotating NSEs (compressible or incompressible).

The main idea is that, a 3D flow domain Ω bounded by four 2D-surfaces is decom-
posed into several thin layers Ωii−1 bounded by 2D surfaces =i, i = 1, 2, · · · , m.
3D rotating Navier-Stokes operators in thin layer Ωii−1 ∪ Ωi+1

i under local semi-
geodesic coordinate based on the surface =i can be represented into the sum of a
membrane operator on =i and a normal (bending) operator to =, then applying
Euler central difference approximate bending operator. Then we obtain a restric-
tion of 3D rotating NSEs on the =i, that is a three components-two dimensional
NSEs (called 2D-3C NSEs). Solving 2D-3C NSEs on =i, i = 1, · · · , m by parallel
algorithms and reiterating until convergence , we can obtain approximate solution
of 3D rotating NSEs. It is obvious that the method is different from the classical
domain decomposition method because we only solve a two dimensional problem
in each sub-domain(stream surface layer), instead of solving a 3D problem, and the
3D domain is decomposed into sub-domains by two dimensional manifold instead
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of flat plane. In addition , this paper provide three methods to solve 2D-3C NSE,
those are artificial viscous method, streamline-FEM and stream functions methods.

The contents are organized as following : provide the mathematical description
of the blade’s surface in section 1; a domain partition’s method and rotating NSEs
in semi-geodesic coordinate based on two dimensional manifold = in section 2; a
2D-3C NSEs-a restriction of 3D rotating Navier-Stokes equation to = in section 4;
provide a Korn’s inequality on the = in section 5; prove the existence of solution
to corresponding variational formulation in section 6.

2. Geometry of the Channel in the Impeller and Navier-Stokes Equa-
tions

Let us consider the geometry of the channel Ωε bounded by two blade’s surfaces
Γ+
s , Γ−s and top- and bottom- surfaces Γt, Γb in a impeller. Let D ⊂ <2 simply-

connected open subset of <2, E denotes a three-dimensional Euclidean space. The
surface of blade is a two dimensional manifold = which is a smooth injective im-
mersion ~R ∈ C3(D; E3):

(2. 1) D = {(z, r)} ⊂ R2 ⇒ R3, ~R(z, r) = r~er + rΘ(z, r)~eθ + z~k,

where (~er, ~eθ, ~k) are base vectors of cylindrical coordinate system rotating with the
impeller and (x1 = z, x2 = r) are the parameters describing the surface = of blade
as a submanifold embedding into E3 , are also usually called Gaussian coordinate
system on =.

In this case the Riemannian metric tensors of manifold = are given by

(2. 2)
{
aαβ = ∂ ~R

∂xα
∂ ~R
∂xβ

= ∂r
∂xα

∂r
∂xβ

+ r2ΘαΘβ + ∂z
∂xα

∂z
∂xβ

= δαβ + r2ΘαΘβ ,
a = det(aαβ) = 1 + r2(Θ2

1 + Θ2
2),

where
Θα =

∂Θ
∂xα

,

bαβ second fundamental form of the surface =

bαβ = ∂2 ~R
∂xαxβ

( ∂ ~R∂x1 × ∂ ~R
∂x2 )/

√
a = 1√

a

∣∣∣∣∣∣
xαβ yαβ zαβ
x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣ ,
where (x, y, z) denote Cartan coordinate, and xα = ∂x

∂xα , yα = ∂y
∂xα , xαβ =

∂2x
∂xαxβ

, · · · , Therefore

(2. 3)


b11 = 1√

a
(x2Θ11 + Θ2(a− 1)),

b12 = 1√
a
(x2Θ12 + Θ1a) = b21,

b22 = 1√
a
(x2Θ22 + Θ2(a+ 1)),

b = det(bαβ) = b11b22 − b212.

The mean curvature H and Gaussian curvature K are given by

(2. 4) 2H = aαβbαβ =
1√
a

(
a11b22 − 2a12b12 + a22b22

)
, K =

b

a
.

It is clear that
(aαβ) ∈ C2(D;S2

>), (bαβ) ∈ C2(D;S2)
are two matrix fields where S2 and S2

> denote the sets of all symmetric matrices of
order two , and of all symmetric, positive definite matrices. (aαβ) : D → S2

> and
(bαβ) : D → S2 are the covariant components of the first and second fundamental
forms of the surface =.


