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NUMERICAL METHODS FOR NON-SMOOTH L1

OPTIMIZATION : APPLICATIONS TO FREE SURFACE FLOWS

AND IMAGE DENOISING
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Abstract. Non-smooth optimization problems based on L1 norms are inves-

tigated for smoothing of signals with noise or functions with sharp gradients.

The use of L1 norms allows to reduce the blurring introduced by methods based

on L2 norms. Numerical methods based on over-relaxation and augmented La-

grangian algorithms are proposed. Applications to free surface flows and image

denoising are presented.
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1. Introduction

The need to smooth a given function is a problem that arises in many fields of
science and engineering. A trade-off between the conservation of the accuracy and
the regularity properties must be obtained. In volume-of-fluid methods pertaining
to computational fluid dynamics, the smoothing of volume fractions of materials is
required when calculating interfacial effects [2, 16]. In image treatment, noise can
be removed by the application of appropriate filters, based on average mean calcu-
lations, low/high-pass filters or PDE-based techniques. Classical smoothing tech-
niques range from kernel-based methods [2], to PDE-based techniques or wavelet-
based methods [9]. However when using classical techniques, based on quadratic
or L2 norms, blurring of the sharp edges is often introduced. Recently, meth-
ods based on L1 distances have received a lot more attention in various settings
[4, 8, 9, 12, 19, 20]. More generally, smoothing is required when a numerical ap-
proximation of the derivatives of a non-smooth function is needed.

In this article, numerical methods for non-smooth optimization problems relying
on L1 norms are presented in order to reduce the blurring due to quadratic terms in
classical methods. The solution methods for the smoothing of a given signal require
advanced techniques since strict convexity and differentiability properties are not
satisfied. Moreover, the uniqueness of the solution is not guaranteed, unless some
regularization terms are introduced [15, 21].

The problems addressed here consist of the minimization of the distance between
a given signal, typically with jumps or noise, and a smooth approximation whose
first derivatives are regular. The L1 distance is considered first. A smoothing
term is introduced to add regularity. The regularization term is given either by
the L2 norm or the L1 norm of the gradient of the approximated solution. Finally
the L2 distance is considered together with a L1 smoothing term with bounded
variation. Efficient numerical techniques are proposed for the solution of each of
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these problems. The space discretization is addressed with piecewise linear finite
elements. The discretized optimization problems are solved with either an over-
relaxation algorithm [17], or an augmented Lagrangian approach [17, 18] when the
strict convexity property is not satisfied, or a combination of both.

Numerical results are presented for two kinds of applications. First the smooth-
ing of volume fractions in volume-of-fluid algorithms for multiphase flows is known
to introduce artificial numerical errors near the boundaries of the physical domain
(spurious currents) [2, 3, 16, 24, 27, 28]. The approximation of the surface ten-
sion effects near the boundaries requires for instance the introduction of ghost cells
outside the domain [13]. This drawback can be corrected by the proposed approach.

On the other hand, image denoising and reconstruction is a very active field of
research [6, 8, 10, 25]. The use of L1 distance has two main properties: it allows
to avoid the blurring of edges due to quadratic regularization terms, while being
appropriate for removing the noise. Numerical examples based on a famous example
(see e.g. [10]), are presented to compare the suggested approaches.

2. Non-Smooth Optimization Models

Let Ω be a bounded domain in R
2 with a smooth boundary ∂Ω. Let f ∈ L2(Ω)

be a given function (or signal), that contains either sharp interfaces, discontinuities
along lines or points, or noise. We want to approximate the signal f by a smooth
function u (typically u ∈ H1(Ω)) in order to (i) be able to approximate the deriva-
tives of f through the derivatives of the function u, or (ii) remove the noise from
the original signal.

Let Ω ⊂ R
2 be bounded with partition of the boundary Γ0∪Γ1 = ∂Ω, Γ0∩Γ1 = ∅.

Let us denote by V0 and W0 the spaces

V0 =
{

v ∈ H1(Ω) : v|Γ0
= 0
}

,

W0 =
{

v ∈ W 1,1(Ω) : v|Γ0
= 0
}

.

The Neumann case Γ0 = ∅ and Γ1 = ∂Ω is also included. We consider three
possible approaches: first the L1 distance between the original function and its
smooth approximation is considered, together with a regularization term depending
on the gradient of the approximation. This regularization term can be taken as the
L2 or the L1 norm of the gradient. The use of the L1 distance allows to conserve the
sharp gradient (edges) of the original function. Finally, we consider the L2 distance,
together with a L1 smoothing term, and design adequate numerical methods for
each of these problems.

2.1. Optimization with L1 Distance and L2 Smoothing Term. For f ∈
L2(Ω), solve

(1) min
v∈V0

∫

Ω

|v − f |dx +
ε

2

∫

Ω

|∇v|2 dx.

The distance term
∫

Ω
|v − f |dx is not differentiable, but the addition of the

smoothing term ε
2

∫

Ω
|∇v|2 dx forces uniqueness through (strict) convexity. The

following theorem holds:

Theorem 1. Problem (1) admits a unique solution u ∈ V0 (also if Γ0 = ∅). The
solution is characterized by

(2) ε

∫

Ω

∇u · ∇(v − u)dx +

∫

Ω

|v − f |dx −

∫

Ω

|u − f |dx ≥ 0, ∀v ∈ V0.


