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ANOVA EXPANSIONS AND EFFICIENT SAMPLING METHODS

FOR PARAMETER DEPENDENT NONLINEAR PDES

YANZHAO CAO, ZHENG CHEN, AND MAX GUNZBURGER

Abstract. The impact of parameter dependent boundary conditions on solu-

tions of a class of nonlinear partial differential equations and on optimization

problems constrained by such equations is considered. The tools used to gain

insights about these issues are the Analysis of Variance (ANOVA) expansion

of functions and the related notion of the effective dimension of a function;

both concepts are reviewed. The effective dimension is then used to study

the accuracy of truncated ANOVA expansions. Then, based on the ANOVA

expansions of functionals of the solutions, the effects of different parameter

sampling methods on the accuracy of surrogate optimization approaches to

constrained optimization problems are considered. Demonstrations are given

to show that whenever truncated ANOVA expansions of functionals provide ac-

curate approximations, optimizers found through a simple surrogate optimiza-

tion strategy are also relatively accurate. Although the results are presented

and discussed in the context of surrogate optimization problems, most also ap-

ply to other settings such as stochastic ensemble methods and reduced-order

modeling for nonlinear partial differential equations.
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1. Introduction

The type of problems we consider requires the solutions of equations such as

(1) F (u; ~α) = 0,

where ~α ∈ A ⊆ R
p is a vector of parameters and A is some admissibility set. In

particular, we are interested in problems for which F (·; ~α) represents a nonlinear
partial differential equation or system. The specific situation that interests us is
one in which approximate solutions of problems involving (1) are determined by
using the solutions to the problems

(2) F (u(j); ~α(j)) = 0 j = 1, . . . , N,

where {~α(j)}N
j=1 are a chosen set of parameter values. Settings in which such

problems arise include ensemble approximations of solutions of (1) in case the com-
ponents of the parameter vector ~α are random variables with given probability
distributions; building reduced-order models from solutions of (1) at sample values
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of the parameter vector ~α; and the surrogate optimization of a functional. Here,
we focus on the third setting; however, most of the discussions in this paper can be
translated to the other settings.

For surrogate optimization problems, we are given a functional J (u) and are
asked to find ~α∗ ∈ A and a corresponding u∗ that solve the problem

(3) min
~α∈A

J (u) subject to F (u; ~α) = 0,

where A is a bounded subset of R
p. In this setting, u denotes the state variable,

~α the vector of design parameters, and the constraint equation F (u; ~α) = 0 the
state system. Note that through the constraint, the functional J (u) is implicitly
a function of the components of the parameter vector ~α. A simple, derivative-free
approach to finding approximate solutions of the problem (3) is to first choose

particular values {~α(j)}N
j=1 for the parameters, then solve the problems in (2), and

then use those solutions to evaluate the functional so that one obtains, for j =
1, . . . , N , the values J (u(j)) corresponding to the parameter vectors ~α(j). One
would then use this information to build, e.g., by a least-squares or interpolatory
method, a surrogate function Jsur(~α) defined over the parameter subset A that can
be used as an approximation to J (u(~α)) over A. Finally, one would approximate
the solution of the optimization problem (3) by the parameter values that minimize
the simpler functional Jsur(~α), i.e.

(4) ~α∗ ≈ ~α∗
sur, where ~α∗

sur solves the problem min
~α∈A

Jsur(~α).

Building the surrogate functional requires the evaluation of the functional J (·) at
the points {~α(j)}N

j=1 sampled within the set A. In turn, evaluating the functional at

the N parameter points requires N solves of the constraint equation as in (2). Since
the latter step involves solving a nonlinear partial differential equation system, it
dominates the overall computation; thus, the constraint equation should be solved
as few times as possible. Thus, we want to sample only a “few” points in A, i.e.,
we want to sample sparsely. In addition, in practice, p, the number of control
parameters, may be large so that, for the surrogate optimization problem, we are
interested in intelligent, sparse sampling in possibly high dimensions.

In this paper, we treat a simple model problem, but the need for intelligent
sampling would be even greater in more complicated settings. We even simplify
things some more by assuming that the parameter vector is constrained to belong
to a hypercube, that its components have no known bias or correlation so that
we will sample them uniformly and independently, and that they appear linearly
in the definition of the problem. Clearly, this work is only the beginning of what
should be a much larger study that encompasses more general and more realistic
situations.

The particular focus of this paper is to explore the connections that ANOVA
(Analysis of Variance) expansions of multivariate functions (and the related notion
of the effective dimension of those functions) have with the solution of parameter-
dependent nonlinear partial differential equations. Specifically, we will study the
general approximation properties of ANOVA expansions for functionals of solu-
tions of nonlinear partial differential equations and the implications that particular
features these expansions possess have on those solutions and on how one builds
surrogate functionals.

Of course, the problem of solving partial differential equations with parameter-
dependent input data is an active research area; see e.g., [1, 4, 12–15, 17, 19–22, 26,
28, 29]. However, these works are mostly focused at finding approximate solutions


