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AN OPTIMAL-ORDER ERROR ESTIMATE TO THE MODIFIED
METHOD OF CHARACTERISTICS FOR A DEGENERATE
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Abstract. We prove a priori error estimates in a weighted energy norm to the

modified method of characteristics (MMOC) for time-dependent convection-

diffusion equations with degenerate diffusion. The convergence rates are inde-

pendent of the lower bound of the diffusion. In other words, these estimates

hold uniformly with respect to the degenerate diffusion.
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1. Introduction

Time-dependent advection-diffusion equations arise in mathematical models of
porous medium flow and transport processes, including petroleum reservoir simu-
lation, environmental modeling, and other applications. In such applications as
immiscible displacement of oil by water in a secondary oil recovery process in
petroleum industry or a groundwater transport process involving a non-aqueous
phase liquid (NAPL), the corresponding governing equation is a degenerate time-
dependent nonlinear advection-diffusion equation for the saturation of the invading
phase. The diffusion in the saturation equation is due to capillary pressure effect,
which could vanish or exhibit significant effect depending on whether the wetting
phase or the nonwetting phase occupies the pore space [3, 5, 16, 19]. On the other
hand, subsurface geological formations often consist of layered media, in which the
diffusion parameters could vary by several orders of magnitude. In all of these
applications, the governing equations could be convection-dominated in part of the
domain while diffusion-dominated in the other part. Consequently, these problems
admit solutions with moving fronts and complex structures and present serious
mathematical and numerical difficulties.

Classical finite difference or finite element methods tend to generate numeri-
cal solutions with nonphysical oscillations, while classical upwind methods often
produce numerical solutions with excessive numerical diffusion that smears out the
fronts and generates spurious effects related to grid orientation [9, 14, 16]. Eulerian-
Lagrangian methods provide an alternative approach for numerically solving time-
dependent advection-diffusion equations. These methods combine the advection
and capacity terms in the governing equations to carry out the temporal discretiza-
tion in the Lagrangian coordinates, and discretize the diffusion term on a fixed
mesh in the Eulerian coordinates [6, 11, 13, 24]. They symmetrize the governing
equation and stabilize their numerical approximations. Moreover, they generate
accurate numerical solutions and significantly reduce the numerical diffusion and
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grid-orientation effect present in upwind methods, even if large time steps and
coarse spatial meshes are used. Eulerian-Lagrangian methods were shown to be
very competitive in terms of accuracy and efficiency [11, 26, 28].

The modified method of characteristics was one of the pioneering methods in the
class of Eulerian-Lagrangian methods and was proposed and analyzed in early 1980s
[13]. Since then the MMOC has been successfully applied to the numerical simu-
lation of coupled systems in miscible displacement and immiscible displacement in
petroleum industry [9, 14, 17]. Subsequently, various improvements of the MMOC
were developed, including the modified method of characteristics with adjusted
advection (MMOCAA) [11, 12], the Eulerian-Lagrangian localized adjoint method
(ELLAM) [1, 6, 24, 25, 28], the characteristic mixed finite element method (CM-
FEM) [2, 33], and the Eulerian-Lagrangian discontinuous Galerkin method (ELDG)
[32] in the context of linear advection-diffusion equations, single-phase miscible dis-
placement processes, immiscible two-phase flow, and multiphase multicomponent
flow and transport processes in porous media.

Extensive research has been carried out on the convergence analysis and error
estimates for the MMOC [13], the MMOCAA [12], the CMFEM [2], the ELLAM
[22, 23, 27], and the ELDG [32]. However, the generic constants in these estimates
depend inversely on the vanishing parameter ε and so will blow up as ε tends
to zero. These estimates fail to reflect the uniformly optimal-order convergence
rates of the Eulerian-Lagrangian methods observed numerically. An ε-uniform
suboptimal-order error estimate was proved for the MMOC scheme for a time-
dependent advection-diffusion equation with an incompressible velocity field v and
a nonstandard boundary condition v = 0 and the diffusion of the form ε∆u [4].
Subsequently, ε-uniform estimates for the MMOC, the MMOCAA, the ELLAM,
and the ELDG schemes for time-dependent advection-diffusion equations with the
diffusion of the form εD(x, t) and with a periodic boundary condition or a general
flux boundary condition [29, 30, 31] were obtained. However, all of these ε-uniform
estimates depend heavily on the lower bound Dmin and upper bound Dmax of the
diffusion coefficient D(x, t), although they are ε-independent. A suboptimal er-
ror estimate was proved for the MMOC scheme for a degenerate time-dependent
advection-diffusion equation [10].

In this paper we prove a priori optimal-order error estimates in a weighted energy
norm to the MMOC scheme for degenerate time-dependent convection-diffusion
equations with a degenerate diffusion. The convergence rates are independent of
the lower bound of the diffusion, and they do not require the upper bound of the
diffusion to tend to zero at the same rate as in the case of vanishing diffusion coef-
ficient ε. The rest of this paper is organized as follows. In §2 we recall preliminary
results on Sobolev spaces and interpolation of spaces. In §3 we revisit the MMOC
scheme. In §4 we prove optimal-order error estimates in a weighted energy norm
to the MMOC scheme. In §5 we prove auxiliary lemmas, which were used in the
proof of the main theorem in §4. §6 contains concluding remarks.

2. Model Problem and Preliminaries

We present a model problem and auxiliary results in this section.

2.1. Mathematical Model. We consider a time-dependent linear advection-diffusion
equation with a degenerate diffusion in one space dimension

(1)
ut + V (x, t)ux − (D(x, t)ux)x = f(x, t), (x, t) ∈ (a, b)× (0, T ),

u(x, 0) = uo(x), x ∈ [a, b].


