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GALERKIN CHARACTERISTICS METHOD FOR

CONVECTION-DIFFUSION PROBLEMS WITH MEMORY

TERMS

JOZEF KAČUR AND MOHAMMED SHUKER MAHMOOD

Abstract. We use the modified method of characteristics for solving non-

linear convection diffusion problems with memory terms. The convergence

of approximation scheme is proved under minimal regularity assumptions on

the velocity field and on the solution. The results are supported by numeri-

cal experiments for contaminant transport with diffusion and non-equilibrium

sorption isotherms.
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1. Introduction

We consider the following mathematical model for convection diffusion with
memory term

(1.1)
∂tb(x, u) + div(F̄ (t, x, u) − k∇u) = f(t, x, u, s),

s(t, x) =
∫ t

0
K(t, z)ψ(u(z, x))dz

in Ω × (0, T ], T < ∞, Ω ⊂ R
N is a bounded domain, ∂Ω ∈ C1,1, see [26]. If Ω

is convex, then ∂Ω is assumed to be Lipschitz continuous. We consider a Dirichlet
boundary condition

(1.2) u(t, x) = 0 on I × ∂Ω, I = (0, T ],

together with the initial condition

(1.3) u(0, x) = u0(x) x ∈ Ω.

We assume 0 < ε ≤ ∂sb(x, s) ≤ M < ∞, k > 0 and suppose that f is sublinear in
u, s and ψ(z) is sublinear in z. The convection term F̄ is Lipschitz continuous in
u.

The mathematical model (1.1)-(1.3) is motivated by contaminant transport in
porous media intensively studied in the last years, see [4, 9, 10, 11, 19, 20, 21, 1]

(1.4)
∂t(θC + ρS) + div(q̄C −D∇C) = 0,

ρ∂tS = d(ψ(C) − S),

where C is the concentration of the contaminant, q̄ is the velocity field (Darcy),
D is the diffusion matrix, ρ is the bulk density, ψ is the sorption isotherm of the
porous media with porosity θ. Here, S is the mass of contaminant adsorbed by the
unit mass of porous medium. The coefficient d describes the rate of adsorption. If
d → ∞, then an equilibrium sorption process occurs with S = ψ(C) and hence,
b(s) = θs + ρψ(s) generates the parabolic term in (1.1) with f ≡ 0. If d << ∞,
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the sorption process becomes non-equilibrium. Then, we can eliminate S from the
ODE and obtain

b(x, z) ≡ θ(x)z,

f(t, x, u, s) = d
(

−ψ(u(t, x)) + s0 e−
d
ρ t+d s

)

, K(t, z) = e−
d
ρ (t−z)

in our model (1.1). The most common isotherms are ψ(z) = c1z
1+c2z

(c1, c2 > 0)

(Langmuir isotherm) or ψ(z) = czp ( 0 < p < 1 and c > 0) ( Freundlich isotherm).
In the case of the Freundlich isotherm, in the equilibrium mode we obtain the model

b(x, z) ≡ θ(x)z + ρzp, f(t, x, u, s) ≡ 0,

which violates ∂zb(x, z) < M <∞. In such a case, our model can be considered as
an approximation of the more general case including ∂zb(x, z) = ∞ in some points
z, see [17]. However, such a problem does not occur in the non-equilibrium model
even if ψ is of Freundlich isotherm type ( not Lipschitz continuous). Our model
(1.1) includes locally both equilibrium (in the Freundlich isotherm type we have the
approximation of the parabolic term) and non-equilibrium adsorption. Moreover,
it is a convection dominated diffusion model. For simplicity, from now on we will
drop the variables x in the terms b, F̄ , f .

The outline of this paper is as follows. In section 2, we define our numerical
scheme. In section 3, we prove its convergence and adress related issues. Section 4
deals with the error estimate for our scheme. In section 5, we discuss the numerical
implementation and present a variety of 1D and 2D examples.

2. Definition of the scheme

Our approximation scheme is as follows: Let ui ≈ u(ti, x), ti = iτ, τ =
T
n , (n ∈ N). At time level t = ti, we determine ui successively for i = 1, . . . , n
from the linear elliptic problem of the form

(2.5)
b′(ui−1)

(

ui−ui−1◦ϕi

τ

)

− k∆ui = f(ti, ui−1, si) − divxF̄ (ti, ui−1)

≡ H(ti, ui−1, si)

ui = 0 on ∂Ω, si =

i−1
∑

j=1

αijψ(uj)τ

where

(2.6) ϕi = x− τωh ∗
(

F̄ ′

u(ti,ui−1)
b′(ui−1)

)

, αij = 1
τ

∫ tj
tj−1

K(ti, z)dz

and ωh ∗ g is the convolution of the mollifier ωh with g ∈ L∞(Ω). As a mollifier we
can take ωh(x) = ω1(

x
h ) 1

hN where

ω1(x) :=











1
κ exp( |x|2

|x|2−1 ) for |x| ≤ 1

0 otherwise

, κ =

∫

x≤1

exp(
|x|2

|x|2 − 1
) .

The approximation scheme (2.5) represents the approximation of the two processes
in the time interval t ∈ (ti−1, ti) where the composition ui−1 ◦ ϕi represents the
transport part of the concentration profile ui−1 along the approximated character-
istics ϕi and the diffusion process is approximated by the implicit Euler scheme.
We note that for the transport equation

∂tu+ q̄ · ∇u = 0,


