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Abstract. We are concerned in this work with simulations of the localization of a finite number
of small electromagnetic inhomogeneities contained in a three-dimensional bounded domain. Typ-
ically, the underlying inverse problem considers the time-harmonic Maxwell equations formulated
in electric field in this domain and attempts, from a finite number of boundary measurements,
to localize these inhomogeneities. Our simulations are based on an approach that combines an
asymptotic formula for perturbations in the electromagnetic fields, a suited inversion process, and
finite element meshes derived from a non-standard discretization process of the domain. As op-
posed to a recent work, where the usual discretization process of the domain was employed in the
computations, here we localize inhomogeneities that are one order of magnitude smaller.
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1. Introduction

This work falls directly in the field of Electrical Impedance Tomography. We
seek to recover unknown inhomogeneities contained in a bounded domain from a
finite number of measurements evaluated on its boundary. From a practical point of
view, such measurements are experimental (or physical) whereas from a simulation
point of view, they are numerically evaluated. Usually in this simulation context,
we solve the underlying inverse problem with the help of a localization procedure
that considers, as data, numerical boundary measurements. Typically, each one
of these measurements results from a numerical computation of the physical field
present in the domain, due to a current applied on its boundary.

In simulations of the localization of small electromagnetic inhomogeneities con-
tained in a three-dimensional bounded domain, we must for instance compute by a
finite element method the electric (or magnetic) field, induced by each prescribed
boundary current, in order to evaluate numerically the corresponding boundary
measurement of “voltage” type. When the required finite element method is based
on the usual triangulation process of the domain, we are concerned, for each pre-
scribed boundary current, with a discrete formulation in electric (or magnetic) field
which is numerically expensive to solve. In fact, the usual triangulation process
generates a “full” conforming mesh of the domain that implicitly takes into ac-
count the discretization of each inhomogeneity and leads to a very large number
of degrees of freedom caused by the smallness of the inhomogeneities — especially
as this is a three-dimensional domain and as mixed finite elements are considered.
The discrete system deriving from the afore-mentioned formulation then has a very
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large number of unknowns and even by solving this system with preconditioning
techniques, we observe, as in [6], that the CPU time needed to evaluate numerically
each boundary measurement remains important. In the presence of a large number
of small inhomogeneities, the number of degrees of freedom associated with the
discrete formulation is excessive and can forbid numerical simulations due now to
the exorbitant requirements in memory storage. Considering then a full conforming
mesh of the domain when it contains multiple small inhomogeneities leads to some
drastic drawbacks regarding the numerical localization as far as memory storage
and CPU time are concerned.

Here we are interested in simulations of the localization of small electromagnetic
inhomogeneities in a three-dimensional bounded domain, based on finite element
meshes that derive from a non-standard discretization process of the domain. This
process is aimed at overcoming the drawbacks inherent in full meshes.

As opposed to [6], where full meshes were considered for the localization of
inhomogeneities and where we were limited in simulations by the smallness of the
inhomogeneities, we expect here to be able to perform localization of much smaller
inhomogeneities.

Our approach will also be based on the framework recently proposed by H. Am-
mari, M.S. Vogelius & D. Volkov [4]. Typically, this framework considers the time-
harmonic Maxwell equations in a three-dimensional bounded domain Ω containing
a finite number m of unknown inhomogeneities of small volume, and proposes to
localize these inhomogeneities from an asymptotic expansion of the perturbation in
the (tangential) boundary magnetic field. In the presence of well-separated inhomo-
geneities, and also distant from ∂Ω, the boundary of Ω, the asymptotic expansion
states that, for any z ∈ ∂Ω,
(1)

(Hα −H0)(z)× ν(z) − 2
∫

∂Ω

curlz(Φk(x, z)(Hα −H0)(x)× ν(x))× ν(z) dσx

= 2α3ω2

m∑

j=1

µ0
µj

(µ0 − µj)G(zj , z)× ν(z)M j(µ0
µj

)H0(zj)

+ 2α3

m∑

j=1

( 1
εj
− 1

ε0
)((curlx G)(zj , z))T × ν(z)M j(ε0

εj
)(curlx H0)(zj) + O(α4) .

In (1), α is the common order of magnitude of the diameters of the inhomogeneities,
and the points zj , 1 ≤ j ≤ m, represent the ’centers’ of the inhomogeneities. The
magnetic field is denoted by Hα in the presence of the inhomogeneities and by H0

in the absence of inhomogeneities. The outward unit normal to Ω is represented
by ν, and ω is a given frequency. The (constant) background magnetic permeabil-
ity and complex permittivity are µ0 and ε0 respectively. Also, µj and εj are the
(constant) magnetic permeability and the complex permittivity of the jth inhomo-
geneity, k2 = ω2ε0µ0, Φk is the “free space” Green’s function for the Helmholtz
operator ∆+k2. The operators applied to the matrix valued function G act column-
by-column, and G(x, z) is the “free space” Green’s function for the “background”
magnetic problem: curlx ( 1

ε0
curlxG(x, z))−ω2µ0G(x, z) = −δzI3, with I3 the 3×3

identity matrix, δz the Dirac delta at z. Also in (1), the superscript “T” denotes
the transpose, M j(µ0

µj
) and M j(ε0

εj
) are the polarization tensors associated with

the jth inhomogeneity (symmetric 3 × 3 matrices). Finally, the notation O(α4)


