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CONVERGENCE OF HIGH ORDER METHODS
FOR MISCIBLE DISPLACEMENT

YEKATERINA EPSHTEYN AND BEATRICE RIVIÈRE

Abstract. We derive error estimates for a fully discrete scheme using primal

discontinuous Galerkin discretization in space and backward Euler discretiza-

tion in time. The estimates in the energy norm are optimal with respect to the

mesh size and suboptimal with respect to the polynomial degree. The proposed

scheme is of high order as polynomial approximations of pressure and concen-

tration can take any degree. In addition, the method can handle different types

of boundary conditions and is well-suited for unstructured meshes.
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1. Introduction

A high order numerical method for solving miscible displacement is introduced
and analyzed in this paper. Miscible displacement occurs in important applica-
tions such as remediation of contaminated groundwater and production of oil from
petroleum reservoirs. The physical model that describes the miscible displacement
phenomena arises from the natural law of conservation of mass. This law is applied
to each component of the fluid mixture. The mathematical model consists of a
coupled system of partial differential equations: a pressure equation and a concen-
tration equation for each component. Since the components of the fluid mixture
may react with each other, the numerical method must accurately solve the laws
of conservation. In particular, it is important to solve the continuity equation that
describes the flow phenomena with high accuracy.

In this work, we propose a fully discrete scheme that is locally mass conser-
vative. The approximations of pressure and concentration at each time step are
discontinuous piecewise polynomials of different degrees. We show convergence
of the numerical method with respect to both the mesh size and the polynomial
degree. The flexibility inherent to discontinuous approximation spaces allows the
use of complicated geometries and unstructured meshes. The primal discontinuous
Galerkin method, analyzed in this paper, encompasses the nonsymmetric interior
penalty Galerkin (NIPG) method, the symmetric interior penalty Galerkin (SIPG)
and the incomplete interior penalty Galerkin (IIPG) method introduced for elliptic
problems in [18, 26, 4]. Discontinuous Galerkin methods have been recently popular
in modeling complex flow and transport problems in porous media (see for instance
[22, 6, 5, 10, 14]).
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Several methods for solving the miscible displacement are proposed and ana-
lyzed in the literature. When classical continuous finite element approximations
are used for both the pressure and the concentration equations, optimal conver-
gence rates are proved in the dispersion-free case and nearly optimal convergence
rates in the dispersion case, under somewhat idealized circumstances [8]. However,
this procedure does not handle the transport-dominated problem arising from the
concentration equation. Strong improvement in the accuracy of the approximation
of the concentration is obtained by considering interior penalty Galerkin methods
that can be based on continuous piecewise polynomial spaces [27] or on discontin-
uous piecewise polynomial spaces [11]. In this case, the pressure equation is solved
with a continuous finite element method and penalty terms involving the jumps in
the normal derivative are introduced in the concentration equation.

In the miscible displacement problem, only the velocity enters the equation for
the concentration and therefore a natural procedure for solving the pressure equa-
tion is the locally mass conservative mixed finite element method. The concentra-
tion equation can be handled either by a continuous finite element method [12, 13]
or by a modified method of characteristics, which combines the time derivative and
the advection terms as a directional derivative [16, 24, 3]. In [23], a combination
of a continuous finite element method and the method of characteristics for the
concentration equation and a standard continuous finite element method for the
pressure equation is used. As in the above cases, time stepping is done along the
characteristics.

More recently, primal discontinuous Galerkin methods have been applied and
analyzed for solving the miscible displacement problem using a semi-discrete ap-
proach. The system of equations is discretized in space only. A combined mixed
method for the pressure equation with NIPG for concentration equation is studied
in [20]. Both pressure and concentration are approximated by the NIPG method
in [21, 17]. However, the convergence result in [21] is valid only if the boundary
condition for pressure is a Neumann type. The numerical scheme presented in this
paper, is fully discrete and valid for both Dirichlet and Neumann boundary condi-
tions for the pressure and Dirichlet, Neuman and mixed boundary conditions for
the concentration.

The outline of the paper is as follows. Section 2 contains the model problem and
assumptions on the data. The coupled discontinuous Galerkin scheme is formulated
in Section 3. Existence and convergence of the numerical solution are obtained in
Section 4. Extensions of the scheme to several types of boundary conditions are
presented in Section 5.

2. Model Problem and Notation

Consider the miscible displacement of one incompressible fluid by another in a
porous medium Ω ⊂ IR2 and over the time interval (0, T ). Let p denote the pressure
in the fluid mixture and let c denote the concentration (fraction volume) of the
displaced fluid in the fluid mixture. The partial differential equations describing


