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DOWNSCALING: A COMPLEMENT TO HOMOGENIZATION

ANNA TRYKOZKO, GEERT BROUWER, AND WOUTER ZIJL

Abstract. A groundwater flow model based on a specified hydraulic conduc-

tivity field in the modeling domain has a unique solution only if either the

head or the normal flux component is specified on the boundary. On the other

hand, specification of both head and flux as boundary conditions may be used

to determine the conductivity field, or at least improve an initial estimate of

it. The specified head and flux data may be obtained from measurements on

the boundary, including the wells. We have presented a relatively simple, but

instructive approach: the Double Constraint (DC) method. The method is

exemplified in the context of upscaling and its inverse: downscaling. The DC

method is not only instructive, but also easy to implement because it is based

on existing groundwater modeling software. The exemplifications shown in this

paper relate to downscaling and demonstrate that the DC method has practical

relevance.
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1. Introduction

The Double Constraint (DC) method is a relatively simple, yet very instructive
approach to inverse modeling. In this paper the DC method has been applied
to downscaling, which can be considered as a practical complement to upscaling.
However, the DC method is applicable in a wider range of settings, especially in
applications in which wells play a role. The DC method is instructive, because it
shows all the ingredients required for inverse modeling: measured heads and fluxes
at the same location on the closed boundary, as well as estimated conductivities
— the priors. At the same time, the method can be easily implemented, provided
that groundwater modeling software is available.

In the context of groundwater flow, a forward model is a model in which the
hydraulic conductivity is specified everywhere in the modeling domain. A forward
model has a unique solution provided that appropriate boundary conditions are
imposed. Considering groundwater flow this is the case only if either the head on
a part of the boundary of the modeling domain, or the flux through that part of
the boundary is specified in any point. Specification of both head and flux at that
part of the boundary over-specifies the problem and has, therefore, no solution.
However, such an over-specification may be used to improve the initially estimated
conductivity field by conditioning it to the measured hydraulic data head and flux,
in such a way that downscaling is meaningful. Determination of conductivities from
additional boundary data is generally called inverse modeling. In our approach we
follow the main steps of a method that has proved its applicability in Eletrical
Impedance Tomography, [1, 4, 6, 9].
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After an introduction to downscaling in section 2, the double constraint method
is presented in section 3. An exemplification of downscaling for a grid block far
removed from wells is shown in section 4, where two isotropization equations —
Wexler’s equation and the square root equation — have been compared. A similar
example is briefly presented in section 5. Section 6 presents a summary, conclusions
and discussion, while section 7 shows the references.

For reasons of simplification, 2-dimensional problems will be considered. Exten-
sion to 3D problems is straightforward.

2. Downscaling

In this paper downscaling is considered as a practical complement to upscaling
with application in groundwater flow modeling.

Upscaling starts with a fine-scale model with heterogeneous fine-scale conduc-
tivities in the elements (triangles, grid blocks) of a gridded rectangular upscaling
cell. From these fine-scale conductivities the homogeneous effective coarse-scale
conductivity of the upscaling cell is determined. A variety of upscaling methods
has been applied and published, starting from well-known arithmetic and harmonic
averages for flow respectively parallel and normal to layers, as well as the geometric
average for fine-scale isotropic checkerboard patterns. For more complex fine-scale
conductivity configurations the renormalization method can be applied, or a large
class of methods based on fine-scale solution of the flow equation - see [7] for a
review. Then based on specific discharge rates and head gradients in the fine-scale
elements, the upscaled conductivity may be computed.

With respect to the latter class of methods, the question of boundary conditions
to impose on the upscaling cell arises. Homogenization, probably the most pop-
ular method from this class, assumes periodicity of the porous medium and, as a
consequence, periodic boundary conditions. Presumably, boundary conditions that
are consistent with the actual flow might appear superior above the more-or-less
arbitrarily chosen periodic boundary conditions. However, when using boundary
conditions derived from an actual flow pattern, there is no consistency between
different possible definitions of a large-scale conductivity, [11]. It should be men-
tioned that there exists another category of methods capable of dealing directly
with a multiscale structure of the medium. A wide overview of such methods is
given in [5]; this topic will not be further addressed in this paper.

A coarse-scale model consists of grid blocks (in a finite difference setting) in which
each grid block has a coarse-scale conductivity that is obtained by upscaling from
fine-scale conductivities. Once the solution of the flow problem in the large scale is
computed, the modeler (the geohydrologist) may want to zoom in into the details
of the groundwater flow in one or more coarse-scale grid blocks. If the original fine-
scale conductivity distribution — from which the coarse-scale conductivity was
derived by homogenization — is still known, we can run a fine-scale flow model
on one large-scale cell with boundary conditions derived from the flow pattern
calculated by the coarse-scale model. The fine-scale boundary conditions should
be such that: (i) the total inflow through the boundary of the fine-scale model
should be equal to the inflow calculated by the coarse-scale model, and (ii) the
average head on each boundary node of the fine-scale model should be equal to the
average head calculated by the coarse-scale model. Also wells may be considered
as boundaries.


