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HOMOGENIZATION OF SECONDARY-FLUX MODELS OF
PARTIALLY FISSURED MEDIA

MALTE A. PETER AND RALPH E. SHOWALTER

Abstract. Fully-saturated and partially fissured media, in which supplemen-

tary flow and transport arise from direct cell-to-cell diffusion paths, have been

described accurately over a wide range of scales by discrete secondary-flux

models. These models were constructed as an extension of classical double-

porosity models for totally fissured media by two-scale modeling considerations.

There is some substantial literature on the analysis of continuously distributed

secondary-flux models, and the corresponding discrete models have been proven

to give efficient and accurate simulations when compared to recently available

experimental data. These are particularly effective in the presence of advection.

In this note, a summary description is given for the two-scale convergence of the

discrete secondary-flux model to the corresponding continuous double-porosity

secondary-flux model.
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1. Introduction

Problems of flow and transport through porous media lead to initial–boundary-
value problems for a coupled elliptic–parabolic system of partial differential equa-
tions of elliptic and parabolic type. The fluid flow is described by an elliptic equa-
tion, and its solution provides the velocity for a parabolic equation with advection
for the concentration u of a dissolved chemical transported by that flow. When the
process takes place in a non-homogeneous medium, the coefficients vary on such
a small scale that computation of the solution is very intensive and an upscaled
model is needed. We shall consider the generic case of the single parabolic equation
in a periodic medium of very small period ε > 0. This provides an indication of
the corresponding results for the full system of flow and transport.

The locally representative unit cell is given in the two parts, Y = Zf ∪ Zs,
and then it is scaled to εY in the ε-periodic structure. In the classical case of
the diffusion equation for transport, the diffusion coefficient varies between two
constants, Df on the fast region Zf and Ds on the slow region Zs of the unit cell
Y . We denote the fine-scale coefficient in this situation by Dε(x) = [Df , Ds; ε].
The system is homogenized by taking the two-scale limit as ε → 0, and the limit
of its solution uε(x, t) is the solution u(x, t) of an equation of the same form but
with the constant effective coefficient D̃. The formulae for D̃ show that the fast
and slow regions are flux coupled through the gradient of the solution on the two
regions. The gains of this homogenized model are that the fine-scale geometry
is averaged out, so it is computationally straightforward, and it provides a good
approximation of the real situation in the low-contrast cases when ε is small. See [7]
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for detailed expositions of various approaches and background in homogenization
of porous media.

However, such models do not recover the tailing effects that are observed in
experiments or in simulations when the contrast Df/Ds is large, for then there
are consequential memory effects due to the relatively slower release of the solute
stored in the small cells. A very special situation is the obstacle problem which
corresponds to the extreme case of Ds = 0. We denote the corresponding effective
coefficient by D̃0. Here, of course, there are no such memory effects, as there is
no secondary storage, and this situation is described well by the preceding classical
case. It is the cases of intermediate contrast that require better modeling.

The situation of highly-heterogeneous media in which the contrast between fast
and slow regions is very high can be described as above but with the diffusion coeffi-
cient Dε(x) = [Df , ε2Ds; ε] scaled as indicated in the slow region. Here the contrast
is balanced with the cell size to maintain the two-way coupling of concentration and
flux between the slow cells and the fast surrounding region. The limit leads to a
system whose structure is quite different from the original single equation, namely,
a macro-equation for an unknown u(x, t) given on the macroscopic medium and a
family of micro-equations for unknowns U(x, y, t) given in the local reference cell
at each point x of the macroscopic region. The cell solution provides the source
term or input q(x, t) =

∫
∂Zs Ds∇yU · ν dσ back into the macro-equation, while the

macro-variable enters the cell problem through the boundary condition

U(x, y, t) = u(x, t), y ∈ ∂Zs.(1)

This is the double-porosity model of Arbogast, Douglas & Hornung [2]. It is a large
fully-coupled system, with a local diffusion problem at each point in the medium,
but the structure is highly parallel and amenable to computation. It is value or
concentration coupled into the cells and gradient or flux coupled into the macro-
equation. The gain of this model includes the additional secondary-storage via the
coupling of the fast and slow components and some of the resultant tailing effects
and memory effects observed in experiments but unattainable with the classical
model. The assumptions depend on the critical contrast ε2 between coefficients. It
was observed in [9] that the coefficients in the macro-equation are precisely those
of the corresponding obstacle problem.

The double-porosity model completely misses any advective effects at the cell
level, since the input to the cell (1) is constant on the local boundary. In order to
couple the cells more tightly to the surrounding medium, the boundary condition
(1) was replaced with the affine constraint

(2) U(x, y, t) = u(x, t) +∇u(x, t) · (y − y0), y ∈ ∂Zs,

by Peszyńska & Showalter [9]. Their objective was to include the local advective
contributions and accurately model the full range of contrasts that were reported
in the extensive experiments [13]. They showed the source term q(x, t) needs to
be altered to maintain conservation of mass, and this leads to the secondary-flux
term. With the affine coupling into the cells, this model captures advection effects
and contributes both the secondary-storage and the secondary-flux which are added
back through the source term to the macro-equation. With this tighter coupling
through both values and gradients, this model can cover a wide range of contrasts
and accurately reproduce the break-through curves throughout the entire range of
contrasts. See [9] for further discussion.


