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CONSTRUCTION OF BOUNDARY LAYER ELEMENTS FOR
SINGULARLY PERTURBED CONVECTION-DIFFUSION

EQUATIONS AND L2- STABILITY ANALYSIS

CHANG-YEOL JUNG AND ROGER TEMAM

Abstract. It has been demonstrated that the ordinary boundary layer ele-

ments play an essential role in the finite element approximations for singularly

perturbed problems producing ordinary boundary layers. Here we revise the

element so that it has a small compact support and hence the resulting linear

system becomes sparse, more precisely, block tridiagonal. We prove the valid-

ity of the revised element for some singularly perturbed convection-diffusion

equations via numerical simulations and via the H1- approximation error anal-

ysis. Furthermore due to the compact structure of the boundary layer we are

able to prove the L2- stability analysis of the scheme and derive the L2- error

approximations.
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1. Introduction

In this article we consider linear singularly perturbed boundary value problems
of the types:

−ε4uε − uε
x = f in Ω,(1.1a)

uε = 0 on ∂Ω,(1.1b)

where 0 < ε << 1, Ω = (0, 1)×(0, 1) ⊂ R2. The function f is assumed to be smooth
on Ω̄ but only in Section 3 below we will assume (for the L2- stability analysis) that
f belongs to L2(Ω). Problem (1.1) is meant to be a simplified model for a class
of problems involving variable coefficients and curved boundaries. However the
treatment of these more involved problems only involve additional purely technical
difficulties and we thought it would be more appropriate to present our results in
the case of this model problem. Variable coefficients equations, curved boundaries
and other generalizations will be addressed in separate works.

As ε becomes small, the solutions to problem (1.1) generally display, near the
boundaries, thin transition layers called boundary layers, which are due to the
fact that the boundary conditions of the problem are not the same for ε > 0 and
ε = 0, and then (for ε > 0 small) certain derivatives of the solutions become
very large near the boundaries. We expect that within these boundary layers,
the approximation errors of the discretized system corresponding to problem (1.1)
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become very large (due to the large H2- singularities of the boundary layers).
When the stiffness of the discretized systems is not properly handled, those large
approximation errors at the boundaries propagate in the whole domain due to
the convective term, e.g. −ux in (1.1a), and then the numerical solutions show a
highly oscillatory behavior, see e.g. [20], [22], [3], [4], [13], [14] and [15]. Resolving
boundary layers by the classical approximation methods requires very fine meshes,
which is costly to realize in practice. Indeed, the thickness of the boundary layers (of
order O(ε) for ordinary boundary layers (OBL), and of order O(ε1/2) for parabolic
boundary layers (PBL), see [23], [15]) is usually much smaller than the mesh size
h. Notice that our problem (1.1) produces both OBLs at x = 0 and PBLs at
y = 0, 1, which pollute the numerical solutions, globally and locally respectively.
In view of properly approximating such problems, it has been suggested by Han
and Kellogg, in [10], [11] to add to the Galerkin space suitable profile functions
encompassing the main features of the boundary layers, leading to the so-called
enriched subspaces (ES) method. In this article and related ones [3], [4] we call
Boundary Layer Elements (BLE) these profile functions. A related concept is that
of exponentially fitted splines (or L- splines) (EFS) where the Galerkin basis of
spline functions is chosen (constructed) adapted to the operator Lε; see [9] for
one-dimensional two-point boundary value problems and [6], [7] and [18] for two-
dimensional ones. Our works is closer to the enriched subspaces point of views,
and we use asymptotic expansions inspired in part by the work [23] to construct
the boundary layer elements using asymptotic expansion techniques. We were not
aware of this series of articles on enriched subspaces and exponentially fitted splines
when we started our own work in [3], [4], [13] - [16]. Comparisons between these
articles and our own past and current work are made below.

Before we proceed, we introduce the notations, the semi-norms and norms for
the Sobolev spaces Hm(Ω), m ≥ 0 integer (for m = 0, it is denoted L2), which are,

respectively, |u|Hm =
{∑

|α|=m

∫
Ω
|Dαu|2dΩ

}1/2

and ‖u‖Hm =
{∑m

j=0 |u|2Hj

}1/2

.

The corresponding inner products are (u, v) =
∫
Ω

uvdΩ for L2, ((u, v)) = (u, v) +∫
Ω
∇u ·∇vdΩ for H1, and ((u, v))Hm =

∑
|α|≤m(Dαu,Dαv) for Hm, m ≥ 2. For the

Dirichlet boundary value problem (1.1), we use the Sobolev space H1
0 (Ω), which is

the closure in the space H1(Ω) of C∞ functions compactly supported in Ω. Thanks
to the Poincaré inequality the space H1

0 (Ω) is equipped with the inner product
((·, ·)) =

∫
Ω
∇u · ∇vdΩ, and the norm ‖ · ‖ = | · |H1 .

In [3], [4], [13], [14] and [15], it is demonstrated that the boundary layer elements
(BLE), i.e.

φ∗0(x) = −e−x/ε − (1− e−1/ε)x + 1,(1.2)

play an essential role in the finite element approximations for singularly perturbed
problems producing the OBLs.

The present article is concerned with two dimensional extensions of [3] and the
efficient application of the BLE φ∗0. To solve the problem (1.1) in the finite element
context, we consider its weak formulation: To find u ∈ H1

0 (Ω) such that

aε(u, v) := ε((u, v))− (ux, v) = (f, v), ∀v ∈ H1
0 (Ω),(1.3)

and then we look for an approximate solution uh ∈ Vh such that

aε(uh, vh) = (f, vh), ∀vh ∈ Vh,(1.4)

where the finite element space Vh will be specified in Section 2.2 below. It contains a
classical Q1 finite element space enriched by a boundary layer element related to φ∗0.


