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SUBSTRUCTURING PRECONDITIONERS FOR
PARABOLIC PROBLEMS BY THE MORTAR METHOD

MICOL PENNACCHIO

Abstract. We study substructuring preconditioners for the linear system aris-

ing from the discretization of parabolic problems when the mortar method is

applied. By using a suitable non standard norm equivalence we build an effi-

cient edge block preconditioner and we prove a polylogarithmic bound for the

condition number of the preconditioned matrix.
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1. Introduction

We deal with the efficient construction of preconditioners for the linear system
associated to the discretization of parabolic problems when a domain decompo-
sition method is applied. Different domain decomposition methods for parabolic
problems can be found in literature, see e.g. [14, 11, 12, 25] but here we focus
on the mortar method which is a nonconforming domain decomposition method
that allows different discretization and/or methods in different subdomains and
that weakly enforces the matching of discretizations on adjacent subdomains (see
[3, 4, 8, 23]).

Implicit schemes in the time variable, such as the backward Euler and Crank-
Nicolson, are considered hence, at a fixed time level, we have to solve an elliptic
problem depending on the time step parameter. Consequently, we might apply the
methods originally proposed for elliptic equations (see [13, 24, 21, 22]) but here we
propose a preconditioner that takes into account the parabolic structure of the orig-
inal problem. More specifically, after elimination of the degrees of freedom internal
to the subdomains, we have to find the traces of the solution on the subdomain
boundaries, i.e. to solve the Schur complement system. The approach considered
here is the substructuring one, proposed in [9] for conforming domain decomposi-
tion and already applied to the mortar method in [1] for the case of order one finite
elements and then generalized to a general class of discretization spaces in [7, 6]. A
suitable splitting of the nonconforming discretization space in terms of “edge” and
“vertex” degrees of freedom is considered and then the related block-Jacobi type
preconditioners are used.

In order to design a convenient and inexpensive preconditioner, the edge and
vertex blocks have to be replaced in a suitable way; indeed they are not explicitly
constructed but it is important to compute efficiently the action of their inverse. For
elliptic problems an efficient approximation of the edge block was built by using
a norm equivalence for the space H

1/2
00 (see [9]). Analogously here, we propose

an equivalent but cheaper to implement edge block preconditioner for parabolic
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problems by proving a suitable non standard norm equivalence. We show that
the edge block can be built by adding to the known preconditioners for elliptic
problems a new term that can be easily computed and that was suggested by the
norm equivalence proved.

Following the abstract formulation presented in [7, 6] we prove that the condition
number of the preconditioned matrix grows at most polylogarithmically with the
number of degrees of freedom per subdomain, analogously to what happens for the
elliptic case and it remains bounded independently of the time step parameter.

The outline of the paper is the following. In sections 2 and 3 we introduce the
parabolic problem and we briefly review the mortar method and its main properties.
In section 3 we define suitable norms for the trace space that will be crucial for the
construction of the preconditioner. The substructuring preconditioner is proposed
and studied in section 4. The main theorem of the paper (Theorem 4.1) stating
the convergence of the method and the polylogarithmic bound for the condition
number of the preconditioned matrix is presented in the same section. Numerical
experiments that validate the theory are shown in Section 5. Finally, to help the
reader, the Appendix collects some lemmas used in the paper.

For convenience, the symbols ., & and ' will be used in the paper, i.e. x1 . y1,
x2 & y2 and x3 ' y3 mean that x1 ≤ c1y1 , x2 ≥ c2y2 and c3x3 ≤ y3 ≤ C3x3 for
some constants c1, c2, c3, C3 independent of the mesh and time step parameters.

2. A parabolic problem

We consider the following parabolic problem:
find u(x, t) such that:

(1)





∂u

∂t
− div(A(x)∇u) = f in Ω×]0, T [

u(x, t) = 0 on ∂Ω×]0, T [
u(x, 0) = u0(x) in Ω

where Ω ⊂ R2 is a polygonal domain with boundary ∂Ω, f ∈ L2(Ω) and the
matrix A(x) = (aij(x))i,j=1,2 is assumed to be, for almost all x ∈ Ω, symmetric
positive definite with smallest eigenvalue ≥ α > 0 and largest eigenvalue ≤ α′, α, α′

independent of x. The weak formulation of Problem (1) is:
for t ∈]0, T [, find u(x, t) ∈ H1

0 (Ω), u(x, 0) = u0(x) in Ω, such that
(

∂u

∂t
, v

)
+ a(u, v) = (f, v),

with the bilinear form a(·, ·) defined as

a(u, v) :=
∑

i,j

aij(x)
∂u

∂xi

∂v

∂xj
dx(2)

assumed to be bounded and elliptic and the linear functional

(f, v) =
∫

Ω

fv dx.

We consider two types of time discretization, namely, the backward Euler scheme
and the Crank-Nicolson scheme. Both scheme are absolutely stable (see [18]). Let
τn be the n-th time step, then the two schemes lead to the following problems:

for a given g ∈ L2(Ω), find u ∈ H1
0 (Ω) such that

(3) (u, v) + τa(u, v) = (τg, v), ∀v ∈ H1
0 (Ω)


