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Abstract. It is well known that many problems of practical importance in sci-

ence and engineering have multiple-scale solutions. Moreover, the calculations

of numerical methods for these problems is very intensive, even if using some

multi-scale proceedures. It is therefore important to seek efficient calculation

methods. In this paper, superconvergent techniques are used in existing multi-

scale methods to improve the calculation efficiency. Furthermore, based on

comprehensive analysis, the order of the error estimates between the numerical

approximation and the exact solution is verified to be improved.
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1. Introduction

Multi-scale methods have been investigated for a long time in the mathematics
and engineering literature. For example of these papers, we refer to [4], [9] and
[11]. Early papers concentrated on multi-scale methods that are mainly based on
the theory of asymptotic expansion and homogenization. Later, various different
but related multi-scale methods were proposed, including the multigrid numerical
homogenization method ([33], [34], [46], [47]), the multiscale finite element method
(MsFEM) ([37], [38], [31]), the heterogeneous multiscale method (HMM) ([25], [26],
[27], [28]), the finite element method based on the Residual-Free Bubble method
([12], [32], [35], [39]), the wavelet homogenization method ([22]) and so on. Each
of these methods has advantages in some special cases. As is well known, the
multi-grid method as a classical multi-scale technique achieves optimal efficiency
by relaxing the errors at different scales on different grids. It can give an accurate
approximation to the detailed solution of fine scale problems. HMM is a specific
strategy to compute the macro-scale behavior of the system with a standard macro-
scale scheme in which the missing micro-scale data can be evaluated concurrently by
using the micro-scale model. It can deal with many multi-scale problems efficiently
even for problems whose period is unknown. MsFEM can obtain the large scale
solutions accurately and efficiently without resolving the small scale details. The
main idea is to construct in each element finite base functions which can capture
the small scale information. Such small-scale information is then brought to the
large scales through the coupling of the global stiffness matrix.

Although the methods can deal efficiently with some practical problems, the
computation cost may still be very large. For example, in order to simulate elliptic
problems with non-uniformly oscillating coefficients by HMM, at least one unit cell
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in each element will be calculated to obtain the homogenized equation and obtain
the information of the microstructure. This results in intensive calculations if the
number of elements is large. In some cases where the domain and the solution are
smooth enough, it is important to find a more efficient method or technique to
reduce the calculations. It is known that, in [13], a fast post-processing algorithm
which is based on asymptotic expansion used to analyze a multiscale method. But
in [13], the authors just analyzed elliptic problems with uniformly highly oscillatory
coefficients. In practice, there are many multiscale problems with non-uniformly
oscillating coefficients, and by using the post processing technique directly, it is
impossible to improve the order of the error estimate on the whole domain when
one just uses linear interpolation for the unit cells that have been simulated. For
instance, under the conditions above, the error estimate of the HMM for the H1-
broken norm is just O(H). If we use a high order interpolation technique, then the
number of unit cells needed in the calculations will increase greatly if the HMM
method is employed. So, it is very important to reduce the number of unit cells
needed in the calculations. In this paper, we show that it is not necessary to choose
at least one unit cell in each element in which to calculate. We simulate unit cells
on a new mesh, which is different from the partition of the whole domain. The size
of the former is much bigger than that of the latter. This idea is different from that
used in HMM and some other multiscale methods. By using high order interpolation
techniques for the solved unit cells, we then successfully reduce the cost on unit
cells. Moreover, we can use a superconvergent technique to deal with the numerical
solution of the homogenized equation in order to improve its accuracy. Based
on these ideas, some improved error estimates are given. In this paper, we just
investigate the superconvergent techniques in the homogenized equations presented
in [9] and [27]. In fact, superconvergent techniques can also be efficiently extended
to some other multiscale methods. In addition, we just discuss elliptic problems.
For parabolic multiscale problems with suitable conditions, the superconvergent
technique is also valid.

In the past forty years, superconvergence finite element methods has been an
active research field. Early papers concentrated on superconvergence at isolated
points (see [23] et al ). Later, various type of superconvergent techniques were es-
tablished, either in the strict sense or in an approximate way (see [7], [8], [52], [53],
[58], [59], [60], [40], [44] et al ). In this paper, we merely give a framework to demon-
strate that the superconvergent technique is suited to multi-scale methods and can
efficiently improve the accuracy. Thus, we only employ certain postprocessing tech-
niques proposed in [40] and [44] to improve the existing approximation accuracy.
However some other superconvergent techniques, such as the Zienkiewicz-Zhu su-
perconvergent Patch Recovery (ZZ-SPR), can also be used to improve the order of
error estimates of multi-scale methods.

The outline of this paper is as follows. In the next section, we introduce the model
problem and provide its two similar homogenized equations. Moreover, the error
estimate between the exact solution of the original problem and the asymptotic
expansion of order one is presented, and the estimates
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are obtained.
Based on this result, we present the principal results of this paper in Section 3.

The error estimate, between the exact solution and the numerical solution of the


