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SOBOLEV GRADIENT TYPE PRECONDITIONING FOR THE
SAINT-VENANT MODEL OF ELASTO-PLASTIC TORSION
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(Communicated by Lubin Vulkov)

Abstract. In this paper a suitable Laplacian preconditioner is proposed for

the numerical solution of the nonlinear elasto-plastic torsion problem. The aim

is to determine the tangential stress in cross-sections under a given torsion, for

which the physical model is based on the Saint Venant model of torsion and

the single curve hypothesis for the connection of strain and stress. The pro-

posed iterative solution of the arising nonlinear elliptic problem is achieved by

combining the advantages of Laplacian preconditioners with the qualitatively

favourable aspects of the strong formulation. Error estimate is given for the

convergence of the method. Finally, a numerical example is given.
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1. Introduction

The investigation of the elasto-plastic torsion of a hardening rod has a great
practical importance in mechanics and its theoretical background has been widely
analysed (see, e.g., [11, 12]). The mathematical formulation of this problem leads to
nonlinear differential equations. The most frequently used numerical methods that
arise in this context are the finite difference and finite element methods [20, 23].
The solution of the obtained system of algebraic equations is generally found by
some iterative method. The crucial point in the solution of these systems is most
often preconditioning. Namely, since the condition number of the Jacobians of
these systems tends to infinity when discretization is refined, therefore a suitable
nonlinear preconditioning technique has to be used to achieve a convenient condition
number [2].

In this paper the behaviour of the tangential stress is studied under the elasto-
plastic torsion of a hardening rod based on the following model [12]: the cross-
sections experience rigid rotation in their planes and are distorted in the direction
of the z-axis (this is the Saint Venant model), further, the intensity of the stress is
a strictly increasing function of that of the strain under the hardening condition.
The arising mathematical model is a quasilinear elliptic boundary value problem of
divergence form, in which nonlinearity comes from the stress-strain function.

As mentioned above, the main point in the numerical solution of the arising
elliptic problem is preconditioning. A general efficient way to provide a suitable
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preconditioner is the Sobolev gradient approach, developed by Neuberger for least-
square methods [21, 22], which relies on using the Sobolev inner product. A strongly
related kind of preconditioning is using the discrete Laplacian as preconditioner (see
e.g. [7, 25]). These preconditioning methods benefit by the fast solvers available
for the Laplacian, also involving general domains via the fictious domain approach
(see also [25]). The Sobolev gradient technique points to the infinite-dimensional
generalizations of iterative methods, which go back to Kantorovich [13] and have
undergone extensive development. The authors’ investigations include the gradient
method for non-differentiable operators in a Hilbert space [14], and we underline
that the Sobolev space background helps us in constructing effective natural pre-
conditioners [3, 10, 21].

The Sobolev gradient approach yields a gradient (steepest descent) iteration in
Sobolev space which reduces the solution of the nonlinear equation to the sequence
of auxiliary linear Poisson problems. The numerical solution of these auxiliary linear
problems by a suitable finite element method yields the gradient–finite element
method (GFEM) introduced by the authors in [9]. This method combines the
above mentioned advantages of Laplacian preconditioners with the qualitatively
favourable aspects of the strong formulation. The GFEM is proposed in the present
paper for the numerical solution of the elasto-plastic torsion problem. The main
advantages of the GFEM are an easy algorithmization and preserving the ellipticity
bounds of the differential operator in the ratio of linear convergence. The latter
provides a priori mesh independent estimates for the FEM realization and is due
to the above-mentioned Sobolev space preconditioning background.

Besides the GFEM, we will sketch some other applications of Laplacian precon-
ditioners. In the comparison to other numerical methods it is important to refer to
Newton’s method, widespread for its fast convergence. The problem of only local
convergence and the extra work of compiling the Jacobians may justify the choice
of a theoretically slower method, cf. e.g. [3]. In the GFEM the auxiliary linear
problems are of fixed (Poisson) type, hence the matrices need not be updated in
each step. Further, as we will see, in our problem the rate of linear convergence
is suitably small. We note that for problems where the Laplacian preconditioner
cannot yield a favourable ratio of convergence, one can still use the Sobolev space
setting to construct preconditioned Newton iterations [4, 16, 25]. Some further re-
marks on the comparison of the GFEM, the nonlinear CGM and Newton’s method
will be given in Subsection 4.2.

The paper is organized as follows. Section 2 describes the physical model based
on [12]. In Section 3 mathematical background is given. Section 4 is devoted to
the construction and error estimate of the GFEM and some related applications of
Laplacian preconditioners. Finally, in Section 5 numerical realization is developed
for computing the tangential stress in a copper bar when crack occurs.

2. The physical model of 2D elasto-plastic torsion

The mathematical model of plastic state under plane deformation conditions was
first given by Saint-Venant, and was later extended by von Mises to 3D, having a
simple physical interpretation and structure.

In the hardening state the model of elasto-plastic torsion is given below following
the presentation of Kachanov [12]. This model is based on the observation that
the equations of deformation theory may be used for plastic deformations which
develop in some definite direction. Since the tangential stress vectors act in parallel
cross-sections, the model reduces the 3D problem to 2D.


