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A UNIFORMLY CONVERGENT METHOD ON ARBITRARY
MESHES FOR A SEMILINEAR CONVECTION-DIFFUSION

PROBLEM WITH DISCONTINUOUS DATA
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(Communicated by Lubin Vulkov)

Abstract. This paper deals with a uniform (in a perturbation parameter)

convergent difference scheme for solving a nonlinear singularly perturbed two-

point boundary value problem with discontinuous data of a convection-diffusion

type. Construction of the difference scheme is based on locally exact schemes

or on local Green’s functions. Uniform convergence with first order of the pro-

posed difference scheme on arbitrary meshes is proven. A monotone iterative

method, which is based on the method of upper and lower solutions, is ap-

plied to computing the nonlinear difference scheme. Numerical experiments

are presented.
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1. Introduction

We are interested in the semilinear two-point boundary-value problem with a
convective dominated term and discontinuous data

(1) −εu
′′

+ b(x)u
′
+ c(x, u) + f(x) = 0, x ∈ ω = (0, 1),

u(0) = 0, u(1) = 0, b(x) ≥ b∗ = const > 0, cu ≥ 0, (cu ≡ ∂c/∂u),
where ε is a small positive parameter. Suppose that the function c is sufficiently
smooth and b, f are piecewise smooth functions, i.e.

b(x), f(x) ∈ Qn
p (ω), n ≥ 0.

We say that v(x) ∈ Qn
p (ω) if it is defined on ω and has derivatives up to order n, the

function itself and its derivatives may only have jump discontinuities at a finite set
of points p = {p1, . . . , pJ}, 0 < pj < pj+1, j = 1, . . . , J − 1, i.e. Qn

p (ω) = Cn(ω\p).
The solution to (1) is a function with a continuous first derivative, which satisfies

the boundary conditions and the equation everywhere, with the exception of the
points in p. The problem (1) has a unique solution [9]

u(x) ∈ C1(ω) ∩Qn+2
p (ω).

Linear versions of problem (1) with discontinuous data are investigated in [2], [5].
The solution of the linear problem possesses a strong boundary layer at x = 1 and
weak interior layers at the points of discontinuity p. The boundary layer is strong
in the sense that the solution is bounded, but the magnitude of its first derivative
at x = 1, grows unboundedly as ε → 0. The interior layers at p are weak: i.e.
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the solution and the first derivative are bounded but the magnitude of the second
derivative grows unboundedly as ε → 0. We show (see Lemma 1) that problem (1)
possesses a strong boundary layer at x = 1 and the solution and the first derivative
are bounded at the points of discontinuity p.

Our goal is to construct an ε-uniform numerical method for solving problem
(1), that is, a numerical method which generates ε-uniformly convergent numerical
approximations to the solution. In [2], [5], for solving the linear version of problem
(1), the uniform numerical methods are constructed by using the integral-difference
method (or the method of locally exact schemes) on arbitrary nonuniform meshes
[2], and by using the standard upwind finite difference method on the piecewise
uniform mesh, which is fitted to boundary and interior layers [5].

In the next section, we establish some a priori estimates of the solution and its
first derivative. In Section 3 we construct a numerical method by applying the
integral-difference approach. Note that in the constructed numerical method, a
difference operator corresponding to the linear differential operator −εd2/dx2 +
bd/dx is equivalent to the upwind finite volume method from [6], [10]. In Section 4
we prove uniform convergence of the numerical method on arbitrary nonuniform
meshes by extending in a natural way the proof of the main theoretical result from
[3] (the difference scheme in the case of problem (1) with smooth data converges
ε-uniformly). In Section 5 we construct a monotone iterative method for solving
the nonlinear difference scheme and prove that the iterates converge ε-uniformly
to the solution of problem (1). In the last section numerical results are presented,
which are in agreement with the theoretical results.

2. Properties of the continuous problem

The following lemma contains a priori estimates of the solution to problem (1).

Lemma 1. If b(x), f(x) ∈ Qn
p (ω), n ≥ 0, then a unique solution to (1) exists and

u(x) ∈ C1(ω) ∩Qn+2
p (ω). The solution u(x) satisfies the following estimates:

∣∣∣∣
dku(x)

dxk

∣∣∣∣ ≤ C

[
1 + ε−k exp

(
−b∗(1− x)

ε

)]
, x ∈ ω, k = 0, 1,

here and throughout the paper, C denotes a generic positive constant independent
of ε.

Proof. The result that problem (1) with the piecewise smooth functions b and f
has a unique solution can be found in [9].

Firstly, we estimate the solution u(x) to (1). The transformation u(x) = eγxw(x)
with a positive constant γ yields the equation and the boundary conditions

−εw
′′

+ b̃(x)w
′
+ c̃(x,w) + e−γxf = 0, w(0) = w(1) = 0,

b̃ = b− 2εγ, c̃(x,w) = e−γxc(x, eγxw) + (bγ − εγ2)w.

If we choose γ = b∗/4 and assume that ε ≤ 1, then

b̃(x) ≥ b̃∗ = b∗/2, c̃w ≥ c̃∗ = (3/16)b2
∗.

If w(x) is the exact solution of the above problem, then by the mean-value theorem,
we can represent c̃(x,w) in the form

c̃(x,w) = c̃(x, 0) + c̃w(x)w(x),

where c̃w(x) = c̃w (x, θ(x)w(x)) , 0 < θ(x) < 1. Assuming that c̃w(x) is given as a
function of x, then the solution w(x) may be considered as a solution of the linear


