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Abstract. We discuss a priori error estimates for a semidiscrete piecewise lin-

ear finite volume element (FVE) approximation to a second order wave equation

in a two-dimensional convex polygonal domain. Since the domain is convex

polygonal, a special attention has been paid to the limited regularity of the

exact solution. Optimal error estimates in L2, H1 norms and quasioptimal es-

timates in L∞ norm are discussed without quadrature and also with numerical

quadrature. Numerical results confirm the theoretical order of convergence.
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1. Introduction

In this paper, we are interested in the finite volume element method (FVEM) for
the following second order linear hyperbolic initial boundary value problem :
Given f(x, t), g(x) and w(x), and t ∈ (0, T ] for x ∈ Ω, find u = u(x, t) such that

utt −∇.(A(x)∇u) = f(x, t) ∀x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0 ∀x ∈ ∂Ω, 0 < t ≤ T,(1.1)
u(x, 0) = g(x) ∀x ∈ Ω,

ut(x, 0) = w(x) ∀x ∈ Ω,

where Ω is a bounded, convex polygonal domain in R2 with boundary ∂Ω and
A(x) = (aij(x))2i,j=1 is a real-valued and uniformly positive definite matrix in Ω.
It is assumed that the functions f, g, w have enough regularity and they satisfy
appropriate compatibility conditions so that the boundary value problem (1.1) has
a unique solution satisfying the regularity results as demanded by our subsequent
error analysis.
The FVEM employs a finite element partition of the domain Ω = Ω ∪ ∂Ω. It may
be considered as a Petrov-Galerkin finite element method in which the trial space is
C0- piecewise linear on the finite element partition of Ω and the test space is piece-
wise constant over the control volume to be defined in Section 2. The FVEM has
been studied by Bank and Rose [3], Cai [4], Chatzipantelidis [6], R. Li et al. [13],
Ewing et al. [10], etc. for elliptic problems and by Chou et al. [5], Chatzipantelidis
et al. [7] and Sinha et al. [18] for parabolic problems. For elliptic problems, the
authors [13] have obtained optimal order H1 and L2 error estimates of the following
form

‖u− uh‖0 ≤ Ch2‖u‖W 3,p(Ω), p > 1,
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where u is the exact solution and uh is the FV approximation of u. Note that the
regularity on the exact solution seems to be too high compared to that for the finite
element methods. On the other hand, it may be difficult to have u ∈ H3 if Ω is a
convex polygonal domain. The authors [10] have derived optimal L2 error estimate
assuming that the exact solution u ∈ H2 and the source term f ∈ H1. They have
also provided an example that if f ∈ L2, then FVE solution may not have optimal
error estimates in L2 norm. In [7], the authors have extended the analysis of [10]
to parabolic problems in a convex polygonal domain. They have also considered
the effect of quadrature for the L2 inner product and derived a priori error esti-
mates. Ewing et al. [11] have discussed a priori error estimates for the parabolic
integro-differential equations using FVEM. In the present paper, we have extended
the results to include the second order hyperbolic equation. Special attention has
been paid for the data with minimal regularity assumption. Moreover, the effect of
quadrature is also discussed.
Let us relate our work with the literature for the second order hyperbolic equations.
R. Li et al. [13] have proved the optimal order of convergence in H1- norm without
quadrature using elliptic projection, but the regularity of the exact solution seems
to be high compared to our results. The finite element analysis for the second or-
der hyperbolic equations without quadrature was discussed by Baker [1] and with
quadrature by Baker and Dougalis [2] and Dupont [9]. Baker and Dougalis [2] have
proved that the finite element solution for hyperbolic equation has optimal order
convergence in L∞(L2) for the semidiscrete scheme, provided g ∈ H5 ∩ H1

0 and
w ∈ H4 ∩ H1

0 . In [15], Rauch has also discussed the convergence of the Galerkin
approximation to a second order wave equation by using piecewise linear polyno-
mials and proved optimal L∞(L2) estimate with g ∈ H3 ∩ H1

0 and w = 0 which
are the minimal regularity conditions for the second order wave equation. Pani
et al. [14] and Sinha [17] have also studied the effect of numerical quadrature in
finite element method for parabolic and hyperbolic integro-differential equations
with the assumption that g ∈ H3 ∩H1

0 and w ∈ H2 ∩H1
0 . In this paper, we have

derived optimal L∞(L2) estimate even with quadrature when g ∈ H3 ∩ H1
0 and

w ∈ H2 ∩H1
0 .

This paper is organized as follows: In Section 3, optimal order of convergence in
L2 and H1 norms for the semidiscrete scheme without quadrature and with the
assumption that the initial functions g, w are in H3 ∩ H1

0 and H2 ∩ H1
0 , respec-

tively, has been derived. Moreover, quasi-optimal order of convergence in maximum
norm has also been proved. The integrals occurring in the semidiscrete scheme are
replaced by quadrature formulae. The effect of numerical quadrature on the esti-
mates has been discussed in Section 4. The analysis is based on the properties of the
standard Ritz projection. In both Sections 3 and 4, the error estimates are derived
under the assumption that the domain is convex polygon. In order to verify the
derived order of convergence, some numerical experiments are discussed in Section
5.

2. Notation and Preliminaries.

In this paper, we use the standard notation for the Sobolev spaces. Let W s,p(Ω)
with 1 ≤ p ≤ ∞ consist of functions that have generalized derivatives of order s in
the space Lp(Ω). The norm of W s,p(Ω) is defined by

‖u‖s,p,Ω = ‖u‖s,p =


 ∑

|α|≤s

‖Dαu‖p
Lp




1/p

for 1 ≤ p < ∞,


