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ON AN INTERFACE PROBLEM WITH A NONLINEAR JUMP
CONDITION, NUMERICAL APPROXIMATION OF SOLUTIONS
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This paper is dedicated to Max Gunzburger, a teacher and a friend,

on the occasion of his 60th birthday.

Abstract. In this paper we describe a one-dimensional interface problem for

the heat equation, with a nonlinear (quadratic) jump condition at the interface.

We derive a numerical method for approximating solutions of this nonlinear

problem and provide some results from numerical experiments. The novelty

of this problem is precisely this nonlinear (quadratic) jump condition, and it

arises in the study of polymeric ion-selective electrodes and ion sensors.
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1. Introduction

In this note we describe a one-dimensional interface problem with a nonlinear
jump condition and derive a numerical method for approximating its solutions.
This problem arises in the study of polymeric membrane, ion-selective electrodes
and ion sensors. The novelty of this problem is precisely this nonlinear (quadratic)
jump condition, to our knowledge such problems have not been previously studied.

1.1. The problem. The problem under consideration is a simple, one-dimensional,
transmission problem for the heat equation with a nonlinear (quadratic) jump con-
dition at the interface.

Define Ω− = (−1, 0), Ω+ = (0, 1), and set Ω = Ω−∪Ω+. The interface separating
the two sub-domains is Γ = {0}. Given a function u : Ω 7→ R, we denote its
restriction to each of the two sub-domains by uκ = u|Ωκ for κ = −, or κ = +, and
by u(0κ) the trace uκ(0) = uκ|Γ of uκ on Γ.

The model problem we consider is the following transmission problem

(1)
1
δ
ut − (kux)x = f in Ω× (0, T )

subject to the boundary conditions

(2) u(−1, t) = ub−(t) and u(1, t) = ub+(t) in (0, T ) ,

initial condition

(3) u(x, 0) = u0(x) in Ω ,

along with the jump conditions (interface conditions, at the interface x = 0); a
continuity of flux condition

(4) k(0−)ux(0−, t)− k(0+)ux(0+, t) = 0 in (0, T ) ,
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and a nonlinear jump condition

(5) σ−u(0−, t)− σ+u(0+, t) = σu(0−, t)u(0+, t) in (0, T ) .

Here σ−, σ+, and σ are positive constants (obviously in the case that σ and/or
one of the σκ is zero the jump condition becomes linear and the problem greatly
simplified, this is also the case if σ− = σ+ = 0). While in general k and f may be
some given functions, in the case of interest k is a given piecewise constant function

k(x) =

{
k− for x ∈ Ω−

k+ for x ∈ Ω+
,

for some positive constants k− and k+, δ is a given piecewise constant

δ(x) =

{
δ− for x ∈ Ω−

δ+ for x ∈ Ω+
,

for some positive constants δ− and δ+, and f = 0.

1.2. Motivation. The motivation for studying this problem comes from the mod-
eling of chemical sensors which are comprised, in part, of a polymeric membrane,
ion-selective, electrode. The model describes the concentration u of an ion I in an
aqueous solution (sample) and in an adjoining polymeric membrane, the interface
being the point at which the membrane contacts the solution, see [5] and [4] for
details. A general description of the operating principle, as well as a simpler model,
of such ion sensors may be found in [1].
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Figure 1. The domain, subdomains Ωaq and Ωorg, and interface Γ.

Figure 1 shows the diffusion layer in the aqueous solution Ωaq = (−δaq, 0) which
has a width δaq, and the (organic) membrane Ωorg = (0, δorg) of thickness δorg.

In the absence of sources or sinks the diffusion of ions in the aqueous solution
and membrane is governed by

(6) ut − (kux)x = 0 in Ω× (0, T )

where now Ω = Ωaq∪Ωorg (using notation similar to that introduced in the previous
section). The ion concentration satisfies the boundary conditions

(7) u(−δaq, t) = ub aq(t) and u(δorg, t) = ub org(t) in (0, T )

where the first condition is given by the sample bulk concentration, and the second is
given by the ion concentration in the, so-called, inner solution (a reference solution
on the other side of the membrane, see [1]), and the initial condition

(8) u(x, 0) = u0(x) in Ω .


