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Abstract. A number of practical engineering problems require the repeated

simulation of unsteady fluid flows. These problems include the control, opti-

mization and uncertainty quantification of fluid systems. To make many of

these problems tractable, reduced-order modeling has been used to minimize

the simulation requirements. For nonlinear, time-dependent problems, such

as the Navier-Stokes equations, reduced-order models are typically based on

the proper orthogonal decomposition (POD) combined with Galerkin projec-

tion. We study several modifications to this reduced-order modeling approach

motivated by the optimization problem underlying POD. Our discussion cen-

ters on a method known as the principal interval decomposition (PID) due to

IJzerman.
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1. Introduction

The use of reduced-order modeling in control and optimization has led to practi-
cal solutions for extremely challenging problems, such as control of high-Reynolds
number flow [29], solutions to the Hamilton-Jacobi-Bellman equation arising in
nonlinear feedback control [21], and design of materials for desired microstructure-
sensitive material properties [10]. The development of accurate and reliable reduced-
order models is critical to the success of these solution approaches. In this paper, we
discuss reduced-order models for unsteady flows and suggest a number of potential
improvements.

As in the examples above, reduced-order modeling for nonlinear, time-dependent
problems typically consists of a basis selection strategy coupled with a model build-
ing step. This usually involves a proper orthogonal decomposition (POD) [22] of
simulation time snapshots followed by Galerkin projection to build the model (cf.
[13] and [1]). The POD and its variants are also known as Karhunen-Loève expan-
sions [19, 22], principal component analysis (PCA) [14], and empirical orthogonal
functions (EOF) [23] among others. This method of coupling a reduced-basis with
Galerkin projection to build reduced-order models of fluid flow has developed over
the past two decades [28] as more complex simulation [26] and control [17] appli-
cations emerged. However, reduced-order modeling remains both a “science” and
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an “art.” There are examples where POD combined with Galerkin projection can
produce unstable models from stable, linear systems [33]. Thus, there is an indus-
try in constructing new approaches for reduced-order modeling of both linear and
nonlinear systems.

A number of improvements to the basis selection and model building have been
suggested over the past two decades. Improvements to the Galerkin model-building
portion include the theoretically promising, nonlinear Galerkin methods [24] have
not proven to be a practical alternative to the standard Galerkin methods [18, 20].
However, for flow problems, a number of specialized approaches have shown promise
in managing the energy decay in the model. These are based on modifying or tuning
the viscosity term in the model [6, 9, 31].

To develop adequate basis functions from POD, a (number of) representative
simulation(s) (known as an input collection) is needed. This frequently requires
input from a disciplinary specialist although a number of heuristics based on the
spectral content of the input collection have been suggested, eg. [8]. As well shall
see, the standard application of POD can miss flow structures that are dynamically
relevant but are only expressed for small time intervals. Problems with a convective
nature (eg. travelling waves) produce POD bases that don’t capture any problem
solution structure. This can prevent adequate dimension reduction.

Recent approaches consider the simultaneous calculation of the basis and the
model [32, 2]. In this paper, we consider the little known principal interval de-
composition (PID) [16] and some new extensions. The PID simultaneously finds a
basis element and the time interval over which it is expressed in the data. Thus,
it is well suited for convective problems. In a number of natural extensions to the
PID, we consider multiple basis elements per time interval as well as comment on
practical criteria for choosing the length of the time interval. The result of this last
modification is the development of an a priori estimate of the error associated with
the resulting PID/Galerkin model. Numerical experiments involving the unsteady
von Karman vortex shedding past a square cylinder demonstrate the effectiveness
of these modifications.

2. Overview of reduced-order modeling

We begin by giving an overview of the POD/Galerkin framework for reduced-
order modeling in this section. This will provide the context and notation to explain
the PID approaches in the next section. To facilitate this overview, consider the
(two-dimensional, incompressible) Navier-Stokes equations

ut + u · ∇u = −∇p+ ∇ · τ (u) + f(1)

∇ · u = 0(2)

where u = (u, v) is the velocity vector, p is the pressure, τ (u) = 2νε(u) is the devi-
atoric fluid stress tensor, ν is the kinematic viscosity, and ε(u) = 1/2

(
∇u + ∇uT

)

is the symmetric strain-rate tensor. With suitable nondimensionalization, ν is the
reciprocal of the Reynolds number.

An important step in reduced-order modeling is to find a suitable set of basis
functions. We will give an overview of methods to find them below. For now, assume

we have a reduced-basis of dimension r, {φj(·)}r
j=1 with φj(·) ∈

[
H1(Ω)

]2
where Ω

is the flow domain. Using this basis, we represent our reduced-order approximation


