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A LEAST-SQUARES METHOD FOR CONSISTENT MESH
TYING
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Abstract. In the finite element method, a standard approach to mesh tying is

to apply Lagrange multipliers. If the interface is curved, however, discretization

generally leads to adjoining surfaces that do not coincide spatially. Straight-

forward Lagrange multiplier methods lead to discrete formulations failing a

first-order patch test [12]. A least-squares method is presented here for mesh

tying in the presence of gaps and overlaps. The least-squares formulation for

transmission problems [5] is extended to settings where subdomain boundaries

are not spatially coincident. The new method is consistent in the sense that it

recovers exactly global polynomial solutions that are in the finite element space.

As a result, the least-squares mesh tying method passes a patch test of the or-

der of the finite element space by construction. This attractive computational

property is illustrated by numerical experiments.
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1. Introduction

Mesh tying, or domain bridging, is the opposite of substructuring. A substructur-
ing method solves a boundary value problem using subdomains formed by clustering
finite elements from a given discretization of a domain Ω. A mesh tying method
solves the same problem by using a discretization of Ω, composed of subdomains
that were meshed completely independently. The weak problem is obtained by join-
ing subdomain problems through a suitable variational principle. The simplest non-
trivial case of mesh tying is as follows. Assume that Ω is an open bounded domain
with Lipschitz continuous boundary Γ, composed of two subdomains; Ω1 ∪Ω2 = Ω
and Ω1 ∩ Ω2 = ∅. The interface between the two domains, σ = Ω1 ∩ Ω2, is a con-
nected, non empty set. We want to solve numerically the elliptic boundary value
problem

(1) −∇ ·A∇ϕ+ αϕ = f in Ω, and ϕ = h on Γ,

using independently defined finite element partitions of Ω1 and Ω2, with boundary
conditions imposed on each Γi = Γ ∩Ωi as shown in Figure 1. This computational
setting arises in several different contexts. Equations with discontinuous coefficients
are ideally formulated as transmission or interface problems with σ aligned to the
discontinuity. Another example is solid mechanics in which two deforming bodies
come into contact at σ. A third example arises when for practical and efficiency
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Figure 1. The domain Ω is composed of two subdomains, shown
on the right.

reasons, grid generation on Ω is replaced by independent meshing of its subdo-
mains. Among other things this approach enables an embarrassingly parallel mesh
generation and simplifies meshing of bodies with complex geometries.

1.1. Specifics of mesh tying. In mesh tying Ω is first partitioned into subdo-
mains and then each subdomain is discretized independently. Let Ωhi denote a
discretization of Ωi, i = 1, 2. The discrete subdomains induce approximations Γh1 ,
Γh2 , σh1 and σh2 of Γ1, Γ2 and the interface σ, respectively. Discretization of Ω
is given by Ωh = Ωh1 ∪ Ωh2 . In mesh tying there are two basic configurations for
the discrete interfaces σh1 and σh2 . The first one is when the adjoining surfaces
spatially coincide, σh1 = σh2 = σh. Typically, this happens when σ is polygonal
and can be matched exactly by, e.g., simplexes; see the bottom row in Figure 2.
Such interfaces may arise from cutting a complex shape into simpler subdomains
to improve efficiency of the mesher. The general case, σh1 6= σh2 , typically happens
when σ is curved and cannot be represented exactly1 even by elements with curved
sides. This configuration, illustrated in the top row of Figure 2, arises in problems
with discontinuous coefficients and contact problems, where the problem definition
naturally leads to curved interfaces. In contrast, in domain decomposition and
substructuring methods, the discrete domain Ωh is determined first, and the sub-
domains are defined afterwards as shown in Figure 3. As a result, in these methods
the adjoining interfaces always coincide, σh1 = σh2 = σh.

A minimal requirement for any mesh-tying or domain bridging method is a con-
sistency condition called patch test. A method passes a patch test of order k if it can
recover any solution of (1) that is a polynomial of degree k. When σh1 6= σh2 mesh
tying methods based on Lagrange multipliers experience difficulties and naively de-
fined schemes fail even a first-order patch test, see [12] for an example. Several
approaches have been proposed to address this problem in both two and three di-
mensions [9, 8, 10, 6, 7, 11, 12]. The methods considered in these papers usually
start by selecting one of the non-matching interfaces as a master and the other as
a slave surface. The approach of [8, 9, 10] defines Lagrange multipliers on the slave

1While finite element methods routinely replace curved boundaries Γ by polygonal approxi-
mations Γh, the situation is fundamentally different when a curved interface σ is replaced by two
spatially distinct discrete interfaces σh

1 and σh
2 . While both cases can be viewed as variational

crimes in the sense of [14, p.193], the former case leads to a perturbation of the original problem
that can be estimated by the Strang’s lemma [14, Lemma 4.1, p.186]. For polygonal approxima-

tions the error in energy is O(h3); see [14, p.196]. In the latter case, the discrete computational

domain Ωh
1 ∪Ωh

2 has gaps and overlaps where the problem ceases to be well-defined. In the overlap

regions the ‘solution’ is multiple valued, and in the voids it is undefined.


