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Abstract. General multi-dimensional autonomous dynamical systems and

their numerical discretizations are considered. Nonstandard stability-preserving

finite-difference schemes based on the θ-methods and the second-order Runge-

Kutta methods are designed and analyzed. Their elementary stability is estab-

lished theoretically and is also supported by a set of numerical examples.
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1. Introduction

The increasing study of realistic mathematical models in biology, ecology and
medicine is a reflection of their use in helping to understand the dynamic processes
involved in such areas as predator-prey and competition interactions, infectious
diseases control and multi-species marine societies. Mathematical models usually
consist of systems of differential equations that represent the rates of change of the
size of each interacting component. In most of the interactions modeled all rates
of change are assumed to be time independent, which makes the corresponding
systems autonomous.

Numerical methods that approximate continuous dynamical systems are ex-
pected to be consistent with the original differential system, to be zero-stable
and convergent. Nonstandard finite difference techniques, developed by Mickens
[12, 14], have laid the foundation for designing methods that preserve the physi-
cal properties, especially the stability properties of equilibria, of the approximated
differential system. Anguelov and Lubuma [1] have used Mickens’ techniques to
design nonstandard versions of the explicit and implicit Euler and the second order
Runge-Kutta methods, under the limiting condition that all eigenvalues of the Jaco-
bian at each equilibrium of the original differential system (for simplicity, we name
those eigenvalues “equilibria”-eigenvalues) are single and real. However, a wide
range of mathematical models do not satisfy the aforementioned limitation. Among
them are most of the non-conservative predator-prey systems such as the Lotka-
Volterra models [9, 17, 13], most models with Michaelis-Menten functional responses
[11], the ratio-dependent models [8, 5], some SI, SIS and SIR epidemiology models
[7, 15, 4] and most phytoplankton-nutrient systems [16, 6]. Therefore developing
stability-preserving numerical methods for general autonomous dynamical systems
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that have not only single and real but also multiple real and complex “equilibria”-
eigenvalues is of critical importance. Dimitrov and Kojouharov [3] have designed
a variety of such nonstandard finite-difference schemes for general two-dimensional
systems, based on the explicit Euler, the implicit Euler and the second-order Runge-
Kutta methods. Lubuma and Roux [10] have constructed nonstandard numerical
schemes, based on the θ-methods, that preserve the stability of equilibria for multi-
dimensional systems having all of their “equilibria”-eigenvalues in a subregion of
the complex plane. In this paper we extend the above nonstandard θ-methods
and also develop a new class of stability-preserving nonstandard finite-difference
schemes, based on the second-order Runge-Kutta methods, for multi-dimensional
autonomous dynamical systems with arbitrary complex “equilibria”-eigenvalues.
The proposed new elementary stable nonstandard (ESN) numerical schemes work
very well with conservative as well as with non-conservative dynamical systems.

The paper is organized as follows. In Section 2 we provide some definitions and
preliminary results. We state our main results in Section 3 and prove them in
Section 4. In the last two sections we illustrate our theoretical results by numerical
examples and outline some future research directions.

2. Definitions and Preliminaries

A general n-dimensional autonomous system has the following form:

(1)
dy

dt
= f(y); y(t0) = y0,

where y = [y1, y2, . . . , yn]T : [t0, T ) → Rn, the function f = [f1, f2, . . . , fn]T :
Rn 7→ Rn is differentiable and y0 ∈ Rn. The equilibrium points of System (1) are
defined as the solutions of f(y) = 0.

Definition 1. Let y∗ be an equilibrium of System (1), J(y∗) be the Jacobian of
System (1) at y∗ and σ(J(y∗)) denotes the spectrum of J(y∗). An equilibrium y∗

of System (1) is called linearly stable if Re(λ) < 0 for all λ ∈ σ(J(y∗)) and linearly
unstable if Re(λ) > 0 for at least one λ ∈ σ(J(y∗)).

A one-step numerical scheme with a step size h, that approximates the solution
y(tk) of System (1) can be written in the form:

(2) Dh(yk) = Fh(f ; yk),

where Dh(yk) ≈ dy

dt
, Fh(f ; yk) ≈ f(y) and tk = t0 + kh.

Definition 2. Let y∗ be a fixed point of the scheme (2) and the equation of the
perturbed solution yk = y∗ + εk be linearly approximated by

(3) Dhεk = Jhεk,

where the right-hand side is the linear term in εk of the Taylor expansion of Fh(f ; y∗+
εk) around y∗. The fixed point y∗ is called stable if ‖εk‖ → 0 as k → ∞, and un-
stable otherwise, where εk is the solution of Equation (3).

Definition 3. The finite-difference method (2) is called elementary stable if, for
any value of the step size h, the linear stability of each equilibrium y∗ of System (1)
is the same as the stability of y∗ as a fixed point of the discrete method (2).

We introduce the nonstandard one-step finite-difference method based on a def-
inition given by Anguelov and Lubuma [1].


