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VARIABLE STEP-SIZE SELECTION METHODS FOR
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Abstract. Implicit integration schemes for ODEs, such as Runge-Kutta and

Runge-Kutta-Nyström methods, are widely used in mathematics and engi-

neering to numerically solve ordinary differential equations. Every integration

method requires one to choose a step-size, h, for the integration. If h is too

large or too small the efficiency of an implicit scheme is relatively low. As

every implicit integration scheme has a global error inherent to the scheme, we

choose the total number of computations in order to achieve a prescribed global

error as a measure of efficiency of the integration scheme. In this paper, we

propose the idea of choosing h by minimizing an efficiency function for general

Runge-Kutta and Runge-Kutta-Nyström integration routines. This efficiency

function is the critical component in making these methods variable step-size

methods. We also investigate solving the intermediate stage values of these

routines using both Newton’s method and Picard iteration. We then show the

efficacy of this approach on some standard problems found in the literature,

including a well-known stiff system.

Key Words. Runge-Kutta, implicit integration methods, variable step-size

methods, solving stiff systems

1. Introduction

Recently, there has been interest in the literature concerning the use of geometric
integration methods, which are numerical methods that preserve some geometric
quantities. For example, the symplectic area of a Hamiltonian system is one such
concern in recent literature [1, 2, 3, 4]. Tan [5] explores this concept using implicit
Runge-Kutta integrators. Hamiltonian systems are of particular interest in applied
mathematics, and in fact we test our variable step-size selection method on a well-
known Hamiltonian system in Section 4.2. Furthermore, Hairer and Wanner [6, 7]
showed that although implicit Runge-Kutta methods can be difficult to implement,
they possess the strongest stability properties. These properties include A-stability
and A-contractivity (algebraic stability). These are the main reasons we choose to
investigate variable integration step-size selection using Runge-Kutta methods.

First order ordinary differential equations are solved numerically using many
different integration routines. Among the most popular methods are Runge-Kutta
methods, multistep methods and extrapolation methods. Hull, Enright, Fellen
and Sedgwick [8] have written an excellent comparison of these types of methods.
They test a number of Runge-Kutta methods against multistep methods based
on Adams formulas and an extrapolation method due to Bulirsch and Stoer [9].
A goal of that paper was to compare these different types of methods as to how
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Figure 1.0.1. Illustration of variable step-sizes and error propa-
gation in numerical integration

they handle routine integration steps under a variety of accuracy requirements.
Implicit or explicit integration methods require one to choose a step-size, h, for the
integration. One of the questions Bulirsch and Stoer investigate is a strategy for
deciding what step-size h to use as the methods progress from one step to another.
Others have investigated this very same problem in the past [8, 10, 11, 12].

In this paper, we propose the idea of choosing variable step-sizes by minimizing
an efficiency function for general Runge-Kutta and Runge-Kutta-Nyström integra-
tion routines. As every implicit integration scheme has a global error inherent to
the scheme, we choose the total number of computations in order to achieve a
prescribed global error as a measure of efficiency of the integration scheme. For il-
lustration purposes, consider Figure 1.0.1, referring to the solution of (2). Let x̃(tk)
be our approximation to x(tk). We determine the variable step-sizes h1, h2, . . . , h8,
where hk = tk − tk−1, so that we minimize an efficiency function that minimizes
the sum of the total number of computations to compute x̃(tk) for k = 1, 2, . . . , 8
and the global error that propagates from the local truncation errors at each step
of integration. To the best of our knowledge, our proposed method is novel.

The paper that most closely parallels the spirit of our optimization is that of
Gustafsson and Söderlind [13]. They arrive at a function very similar to (31) using
approximations while optimizing convergence rates, α, for a fixed-point iteration.
They conclude that αopt = e−1 = hoptL‖A‖. They do not carry the argument
further and include the global error in calculating the step-size, h, as we have done
here.

One of the most important benefits of using a variable step-size numerical method
is it’s effectiveness at solving stiff initial value problems when combined with an im-
plicit integration routine. Stiff systems are found in the description of atmospheric
phenomena, chemical reactions occurring in living species, chemical kinetics (e.g.
explosions), engineering control systems, electronic circuits, lasers, mechanics, and


