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AN ε-UNIFORM FINITE ELEMENT METHOD FOR

SINGULARLY PERTURBED TWO-POINT BOUNDARY VALUE

PROBLEMS

Q. S. SONG, G. YIN, AND Z. ZHANG

Abstract. This work develops an ε-uniform finite element method for singu-

larly perturbed two-point boundary value problems. A surprising and remark-

able observation is illustrated: By inserting one node arbitrarily in any element,

the new finite element solution always intersects with the original one at fixed

points, and the errors at those points converge at the same rate as regular

boundary value problems (without boundary layers). Using this fact, an effec-

tive ε-uniform approximation out of boundary layer is proposed by adding one

point only in the element that contains the boundary layer. The thickness of

the boundary layer need not be known a priori. Numerical results are carried

out and compared to the Shishkin mesh for demonstration purpose.
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1. Introduction

This paper is concerned with linear Galerkin finite element method for singularly
perturbed boundary value problems (BVPs). Consider a one-dimensional BVP
problem

(1.1) −εu′′ − bu′ + cu = f, x ∈ (0, 1); u(0) = u(1) = 0.

For simplicity, let b ≤ 0, c ≥ 0, and 0 < ε ≪ 1 be constants such that not both
b and c are 0. If b > 0, by using substitution w(x) = u(1 − x), it reduces to the
case with b ≤ 0. All results presented in this paper can be readily generalized to
smooth and non-vanishing functions b(x) and c(x).

If the exact solution u(·) of (1.1) is “bad” in the sense that ‖u′′‖∞ is not bounded
uniformly in ε, the standard h-version finite element method (FEM) generates huge
errors through the whole domain when ε is very small. Typically, it is caused by a
small interval of width O(ε) or O(

√
ε) (called boundary layer), in which u′′ rapidly

changes.
To overcome this difficulty for the h-version finite element method, there are

roughly two types of methods in the literature: 1) stabilize the approximation by
modifying the variational form under quasi-uniform mesh (if we are only interested
in the overall behavior of the solution); 2) use anisotropic meshes by putting more
grid points in the boundary layer region (if we want to resolve the solution inside
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the boundary layer region as well). Many such schemes are extensively studied
in the context of singularly perturbed problems since the 1970s; see [1], [3]–[20],
and references therein. Among those, upwinding schemes and streamline diffusion
finite element methods (SDFEM) are in the first group, while Bakhalov mesh [1]
and Shishkin mesh [19] belong to the second group.

Given a partition (or grid)

(1.2) T
n = {xi| 0 = x0 < x1 < · · · < xn+1 = 1},

we denote the FEM solution of (1.1) on T
n by un, and the interpolation of the

exact solution on T
n by un

I . If there is only one boundary layer, both Bakhalov
mesh and Shishkin mesh have n + n grid points, with n uniform grids outside the
boundary layer region and n grids inside boundary layer region. The n grids inside
the boundary layer region are uniform for Shishkin mesh and properly graded for
Bakhalov mesh. The a priori error estimates are

(1.3) ‖u − un‖∞ ≤ Cn−2

under Bakhalov mesh, and

(1.4) ‖u − un‖∞ ≤ Cn−2 ln2 n

under Shishkin mesh. Here C > 0 is independent of ε, and the convergence rates
are ε-uniform.

In this article, we propose and analyze a recovery method under uniform or quasi-
uniform mesh. This recovery yields ε-uniform convergence in all elements, except
the one containing the boundary layer. The convergence rate is the same as using
Bakhalov mesh. In addition, we are able to locate a point in each element where
the approximation is extremely accurate. The analysis in this article is elementary
and the scheme is surprisingly simple. Here is our first algorithm.

Algorithm 1.

• Step 1. Solve the problem by the standard finite element method with n
uniform grids. This step is likely to produce an oscillatory solution.

• Step 2. Add an extra grid point anywhere in the element containing the
boundary layer, and solve the same problem again. This step produces
another solution.

• Step 3. Find intersections of the two solutions in Step 1 and Step 2 in all
elements and link those intersections by straight lines.

The above algorithm will produce a highly accurate solution in all but one ele-
ment. The theoretical foundation will be discussed in Section 3. The key observa-
tion is that adding one grid point alters the direction of the oscillation. Therefore,
the two solutions always have an intersection in each element except the one con-
taining the boundary layer.

An astonishing discovery is that the intersection point in each element is invari-
ant, i.e., it is independent of the location of the extra grid point in the boundary
layer element (the element that contains an boundary layer) and independent of
the number of grid points added to the boundary layer element. In other words,
no matter how many grid points we add to the boundary layer element and no
matter where we put them, those intersections outside the boundary layer element
are always the same.

Now let us explain precisely the above description. Without loss of generality,
we assume the boundary layer is at x = 1. Starting from T

n, we add m points
s1, . . . , sm arbitrarily in (xn, 1) and denote the new partition as T

n+m. Then FEM


