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DISCRETIZATION METHODS FOR SEMILINEAR PARABOLIC
OPTIMAL CONTROL PROBLEMS

ION CHRYSSOVERGHI

(Communicated by B. Vulkov)

Abstract. We consider an optimal control problem described by semilin-

ear parabolic partial differential equations, with control and state constraints.

Since this problem may have no classical solutions, it is also formulated in the

relaxed form. The classical control problem is then discretized by using a finite

element method in space and the implicit Crank-Nicolson midpoint scheme in

time, while the controls are approximated by classical controls that are bilinear

on pairs of blocks. We prove that strong accumulation points in L2 of sequences

of optimal (resp. admissible and extremal) discrete controls are optimal (resp.

admissible and weakly extremal classical) for the continuous classical problem,

and that relaxed accumulation points of sequences of optimal (resp. admissi-

ble and extremal relaxed) discrete controls are optimal (resp. admissible and

weakly extremal relaxed) for the continuous relaxed problem. We then apply

a penalized gradient projection method to each discrete problem, and also a

progressively refining version of the discrete method to the continuous classical

problem. Under appropriate assumptions, we prove that accumulation points

of sequences generated by the first method are admissible and extremal for the

discrete problem, and that strong classical (resp. relaxed) accumulation points

of sequences of discrete controls generated by the second method are admissible

and weakly extremal classical (resp. relaxed) for the continuous classical (resp.

relaxed) problem. For nonconvex problems whose solutions are non-classical,

we show that we can apply the above methods to the problem formulated in

Gamkrelidze relaxed form. Finally, numerical examples are given.
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1. Introduction

We consider an optimal distributed control problem for systems governed by a
semilinear parabolic boundary value problem, with control and state constraints.
The problem is motivated, for example, by the control of a heat (or another, e.g.
pollution) diffusion process involving a source, which is nonlinear in the heat and
temperature, with a possibly nonconvex cost, resulting in an optimal control prob-
lem, which is not necessarily convex. The scope of this paper is the study of dis-
cretization/optimization methods generating classical controls (instead of relaxed
ones used in our previous work, see [4]-[7] for the numerical solution of nonconvex
optimal control problems (but with a convex control constraint set), which may
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have classical, or non-classical relaxed, solutions. The problem is therefore also
formulated in relaxed form, using Young measures. The classical control prob-
lem is then discretized by using a Galerkin finite element method with continuous
piecewise linear basis functions in space and the implicit Crank-Nicolson midpoint
scheme in time, while the controls are approximated by classical controls that are
bilinear on pairs of blocks. We have adopted the midpoint scheme since it gives
good state approximation (under some smoothness) and yields a simple and purely
symmetric matching backward scheme for the adjoint discretization. On the other
hand, discontinuous double-blockwise bilinear controls generally give better overall
approximation of smooth, and in some cases piecewise smooth, optimal controls,
than blockwise constant ones (see numerical examples). They are well defined on
pairs of blocks due to the midpoint scheme used, and for consistency with mini-
mizations involving the Hamiltonian in the algorithms. We first state various useful
necessary optimality conditions for the continuous classical and relaxed problems,
and for the discrete problem. Under appropriate assumptions, we prove that strong
accumulation points in L2 of sequences of optimal (resp. admissible and extremal)
discrete controls are optimal (resp. admissible and weakly extremal classical) for the
continuous classical problem, and that relaxed accumulation points of sequences of
optimal (resp. admissible and extremal relaxed) discrete controls are optimal (resp.
admissible and weakly extremal relaxed) for the continuous relaxed problem. We
then apply a penalized gradient projection method to each discrete problem, and
also a corresponding discrete method to the continuous classical problem, which
progressively refines the discretization during the iterations, thus reducing comput-
ing time and memory. Under appropriate assumptions, we prove that accumulation
points of sequences generated by the fixed discretization method are admissible and
extremal for the discrete problem, and that strong classical (resp. relaxed) accumu-
lation points of sequences of discrete controls generated by the progressively refining
method are admissible and weakly extremal classical (resp. relaxed) for the con-
tinuous classical (resp. relaxed) problem. For nonconvex problems whose solutions
are non-classical, we show that we can apply the above methods to the problem for-
mulated in Gamkrelidze relaxed form. Using a standard procedure, the computed
Gamkrelidze controls can then be approximated by classical ones. For nonconvex
problems with smooth (or in some cases piecewise smooth) classical solutions, the
proposed discrete penalized gradient projection method often yields very accurate
numerical results. On the other hand, and if the control constraint set convex, the
Gamkrelidze formulation approach seems to give better results than pure relaxed
methods proposed in previous work (see e.g. [3]) when dealing with nonconvex
problems with non-classical solutions, since the approximation of the relaxed con-
trol by highly oscillating classical controls is replaced by the approximation of three,
possibly piecewise smooth, classical ones. Finally, several numerical examples are
given. For approximation of nonconvex optimal control and variational problems,
and of Young measures, see [1]-[7], [10]-[12].

2. The Continuous Optimal Control Problem

Let Ω be a bounded domain in Rd with a Lipschitz boundary Γ, and let I = (0, T ),
T <∞, be an interval. Consider the semilinear parabolic state equation

yt +A(t)y = f(x, t, y(x, t), w(x, t)) in Q = Ω× I,

y(x, t) = 0 in Σ = Γ× I and y(x, 0) = y0(x) in Ω,


