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A POSTERIORI ERROR ANALYSIS FOR FEM OF
THERMISTOR PROBLEMS
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Abstract. In this paper, we present what we believe is the first a posteriori

finite element error analysis for the system of equations that governs microma-

chined microsensors. Our main result is the establishment of an efficient and

reliable a posteriori error estimator Θ.
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1. Introduction

The system of equations that govern thermistor behavior has a long history.
Recently, it has been the subject of intensive investigations, see e.g. [7] for a survey
of the subject. We are interested in this paper in the version of the system that has
been recently proposed as a model for micromachined microsensors, [4], [5], [6], [7].
The equations incorporate terms that account for heat losses to the surrounding
gas and radiation effects. Some of these are expressed as nonlocal terms, and to
avoid physically contradictory effects at high gas pressures, the system of equations
is expressed as an obstacle problem, [3]. In this article, the existence of solutions
and their long time behaviors was considered. The error analysis of numerical
approximations, based on finite volume methods, were considered in [2]. In this
paper, we present what we believe to be the first a posteriori error analysis for the
finite element approximation of the obstacle system introduced in [3]. In particular
we obtain an efficient and reliable a posteriori error estimator Θ. Our analysis
involves, in part, the adaptation of results earlier obtained for elliptic equations.
To the best of our knowledge, these results are new even for the classical thermistor
systems, as described in [7].

2. Finite Element Approximation of Thermistor problems

Let Ω ⊂ R2 be a polygonal domain, J = (0, T ), Jt = (0, t). Let (·, ·) be the
inner product on Ω. In this paper we adopt the standard notation Wm,q(Ω) for
Sobolev spaces on Ω with norm ‖ · ‖m,q,Ω and seminorm | · |m,q,Ω. Denote Wm,2(Ω)
by Hm(Ω) with norm ‖ · ‖m,Ω and seminorm | · |m,Ω. Set

H1
0 (Ω) ≡ {v ∈ H1(Ω) : v|∂Ω = 0}.

We denote by Ls(0, T ; Wm,p(Ω)) the Banach space of all Ls integrable functions
from (0, T ) into Wm,p(Ω) with norm ‖v‖Ls(0,T ;W m,p(Ω)) =
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(
∫ T

0
‖v‖s

W m,p(Ω)dt)
1
s for s ∈ [1,∞) and the standard modification for s = ∞. Simi-

larly, one define the spaces H1(0, T ; Wm,p(Ω)) and Cl(0, T ; Wm,p(Ω)). The details
can be found in [16]. In addition c or C denotes a general positive constant inde-
pendent of h. Let ‖v‖−1,W represent the negative norm of v defined by

‖v‖−1,Ω = sup
w∈H1

0 (Ω),w 6=0

(v, w)
‖w‖1,Ω

,

‖v‖−1,Ω×Jt
= sup

w∈H1(0,t;H1
0 (Ω)),w 6=0

∫ t

0
(v, w)dt

‖w‖1,Ω×Jt

.

Let ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅. Set

H1
D(Ω) ≡ {v ∈ H1(Ω) : v|∂ΩD

= 0}, H1
φ0

(Ω) ≡ {v ∈ H1(Ω) : v|∂ΩD
= φ0}.

Consider the model problem of thermistor problems: find (u, φ) ∈ K×H1
φ0

(Ω) with
ut ∈ H−1(Ω) for each t such that

(ut, u− v) + (k(u)∇u,∇(u− v)) + η(
∫

Ω

G(x, y)u(y)dy, u− v)

(2.1) +α(u4, u− v) ≤ (σ(u)|∇φ|2, u− v) ∀v ∈ K,

(2.2) (σ(u)∇φ,∇w) = 0 ∀w ∈ H1
D(Ω),

(2.3) u(x, 0) = u0(x) ≥ 0,

where (·, ·) denotes the standard L2(Ω) inner product, and

K = {v ∈ H1
0 (Ω) : v ≥ 0}.

Throughout this paper, we assume that u0 ∈ H1
0 (Ω), φ0 ∈ C∞(∂ΩD), η, α are

constants, 0 ≤ G(x, y) < ∞. In the physically significant case, φ0 is piecewise con-
stant function (in space) on the components of ∂ΩD which represent the contacts.
Moreover, it is assumed that 0 < c ≤ σ(s), k(s) ≤ C < ∞, and there exists a
constant C0 > 0 such that

|σ(s)− σ(s′)|+ |k(s)− k(s′)| ≤ C0|s− s′|, s, s′ ∈ R.

Using (2.2) and Green’s formula, (2.1)-(2.3) can be rewritten to be

(ut, u− v) + (k(u)∇u,∇(u− v)) + η(
∫

Ω

G(x, y)u(y)dy, u− v)

(2.4) +α(u4, u− v) ≤ (σ(u)φ∇φ,∇(v − u)) ∀v ∈ K,

(2.5) (σ(u)∇φ,∇w) = 0 ∀w ∈ H1
D(Ω),

(2.6) u(x, 0) = u0(x).

Let us consider the finite element approximation of problem (2.4)-(2.6). Let
Th

u be a regular partition of Ω. Let hτu be the size of the element τu in Th
u ,

h = maxτu∈T h
u
{hτu}. Set the finite element space Sh

u to be the standard conforming
piecewise linear finite element space on Th

u . Let V h
u = Sh

u ∩H1
0 (Ω), Kh = {v ∈ V h

u :
v ≥ 0}. Then, it is easy to see that Kh ⊂ K. Similarly, let Th

φ be another regular
partition of Ω. Let hτφ

be the size of the element τφ in Th
φ . Set the finite element


