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Abstract. We investigate an explicit finite difference scheme for a Beeler-

Reuter based model of cardiac electrical activity. As our main result, we prove

that the finite difference solutions are bounded in the L∞-norm. We also

prove the existence of a weak solution by showing convergence to the solutions

of the underlying model as the discretization parameters tend to zero. The

convergence proof is based on the compactness method.
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1. Introduction

The purpose of this paper is to study a finite difference scheme for a mathematical
model that describes electrical activity in cardiac tissue. A spatially dependent
model for this phenomenon is commonly written

∂v

∂t
= ∇ · (M∇v)− Iion(s, v),

ds

dt
= F (s, v),

(1)

where v is the transmembrane potential, M is the (diagonal) conductivity tensor,
and s is a state vector whose entries depend on the cell model. This reaction-
diffusion system is commonly referred to as the monodomain model of electrophys-
iology, and the complexity depends on the cell model represented by the ODE
system. A more general model (which is not treated here) for electrical activity in
anisotropic cardiac tissue is the so-called bidomain model. In this model the cardiac
muscle is viewed as a superposition of two (anisotropic) continuous media, referred
to as the intracellular and the extracellular. The intracellular and extracellular me-
dia are connected by a continuous cellular membrane, and this coupling gives rise
to a reaction-diffusion system of degenerate type [5], where the unknowns are the
intracellular potential ui, the extracellular potential ue, and the transmembrane
potential v = ui−ue (i.e., the jump in the potential across the cellular membrane).
Under the assumption of equal anisotropies, (that is, the ratio of the conductivity
coefficients parallel and transverse to the direction of fibre is constant, both for
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the intracellular and extracellular media), the bidomain model reduces to the mon-
odomaim model (1). In this case, the intracellular and extracellular potential ui

and ue can be recovered by scaling the transmembrane potential v appropriately.
The cell model represented by the system of ODEs in (1) could be rather simple,

as in, e.g., the well known FitzHugh-Nagumo model, or, as in recent models, very
complex, see, e.g., Winslow et al. [10], where s contains dozens of variables, such as
membrane channels and ionic concentrations. In the present paper, we investigate
the monodomain model coupled to the Beeler-Reuter equations [1], which was one of
the first mathematical models to be developed for describing the electrophysiology
of a cardiac cell. Compared to more recent models, this is a simple yet fairly
realistic description of cell dynamics due to the presence of the intracellular calcium
concentration, which is important for contraction of the heart. Physiological, as
well as mathematical, considerations impose certain constraints or bounds on the
calcium concentration, and it is our aim here to identify actual values for these
bounds by analysing a finite difference scheme. We point out that the upper bound
on the calcium concentration found in this study depends greatly on the governing
equation of this quantity, and does not necessarily have a significant physiological
interpretation. More advanced models for describing intracellular calcium dynamics
have been developed, by, e.g, Luo and Rudy [8], Noble [2], and Winslow et al. [10].

During the depolarization phase of the heart, the solution is rapidly changing,
i.e., there are steep solution gradients present. Thus there is a need for a strict
requirement on the time step in any numerical scheme that wishes to resolve this
feature of the solution. We identify such a constraint when proving a maximum
principle for an explicit finite difference scheme approximating the system (1) with
Beeler-Reuter kinetics, which is our main result in this paper. In addition, we give
a rather simple convergence proof for the finite difference scheme for a large class
of initial values for the transmembrane potential v. We prove L2 convergence of
the finite difference solutions using the compactness method and the concept of
weak solution. In passing, we mention that due to the sharp transition layers in
the solution, it is reasonable to seek weak solutions of the system. For convergence
of some numerical schemes for (1) with the simpler Hodgkin-Huxley type kinetics,
see [9, 6] and the references cited therein.

The remainder of this paper is organised as follows: In Section 2 we present the
mathematical model. Section 3 is devoted to an informal motivation at the con-
tinuous level of why lower and upper bounds should be available for the solutions
of the reaction-diffusion system (1) with Beeler-Reuter kinetics. We give a weak
formulation of the problem in Section 4, while the finite difference scheme is pre-
sented in Section 5. In Section 6 we prove the maximum principle for the scheme,
while the convergence of the scheme is proved in Section 7. We conclude the paper
by showing some simulation results in Section 8.

Throughout this paper we denote a generic constant that does not depend on
the discretization parameters by K. The actual value of K may change from one
line to the next during a computation.

2. Model description

In this section we present the mathematical model to be studied. We confine
the discussion to two spatial dimensions, but the extension to higher dimensions is
straightforward. We consider a bounded open domain Ω ⊂ RI 2, a fixed final time


