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Abstract. In this paper, we study numerical approximations of eigenvalues

when using projection method for spectral approximations of completely con-

tinuous operators. We improve the theory depending on the ascent of T − µ

and provide a new approach for error estimate, which depends only on the

ascent of Th − µh. Applying this estimator to the integral operator eigenvalue

problems, we obtain asymptotically exact indicators. Numerical experiments

are provided to support our theoretical conclusions.
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1. Spectral Approximations of Completely Continuous Operators

In this paper, we assume that X is a separable reflexive Banach space or a
separable Hilbert space, ‖ · ‖ and < ·, · > are the norm and the adjoint pair in X,
respectively. Let Sh be a sequence of finite dimensional spaces such that

Sh1 ⊂ Sh2 ∀h2 < h1;
⋃

h>0

Sh = X.

We will consider a completely continuous operator T : X → X and a family of
finite ranked operators Th : X → X , such that

‖Th − T‖ → 0 (h → 0).

Consider the operator eigenvalue problem: Find µ ∈ C, 0 6= u ∈ X, such that

(1) Tu = µu.

Also consider its discrete scheme: Find µh ∈ C, 0 6= uh ∈ Sh, such that

(2) Thuh = µhuh.

Let µ be an eigenvalue of T with algebraic multiplicity m, let E be the spectral
projection associated with T and µ, and let Eh be the spectral projection associated
with Th and the eigenvalues of Th which converge to µ. Similarly, let E∗ and E∗

h be
spectral projections associated with the adjoint T ∗ of T and the adjoint T ∗h of Th,
respectively. Moreover, denote R(E), R(Eh), R(E∗), and R(E∗

h) the image spaces
of E, Eh, E∗, and E∗

h, respectively.
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In [4], Chatelin has proved that there exist m eigenvalues of Th (including mul-
tiplicity) µ1,h, µ2,h, . . . , µm,h converging to µ and µ1,h, µ2,h, . . . , µm,h are not
necessarily equal, neither are the ascent of µ and that of µi,h. In addition, the
abstract error estimates of approximate eigenvalues and eigenfunctions have been
studied since 1964 by Babuška, Bramble, Chatelin, Grigorieff, Lemordant, Osborn,
Stummel, Vainikko, etc. A systematic summarization is found in [1]. We will need
the following lemmas [1].

Lemma 1. There is a constant c independent of h, such that

(3) θ(R(E), R(Eh)) ≤ c · ‖(T − Th) |R(E) ‖
for small h, where (T − Th) |R(E) denotes the restriction of T − Th to R(E).

Lemma 2. Let ϕ1, · · · , ϕm be any basis for R(E), and ϕ∗1, · · · , ϕ∗m be the dual basis

for R(E∗). We define µ̄h = 1
m ·

m∑
j=1

µj,h, then there is a constant c independent of

h, such that

| µ− µ̄h | ≤ 1
m

m∑

j=1

|< (T − Th)ϕj , ϕ
∗
j >|

+ c · ‖(T − Th) |R(E) ‖‖(T ∗ − T ∗h ) |R(E∗) ‖.(4)

Lemma 3. Let α be the ascent of µ − T . Let ϕ1, · · · , ϕm be any basis for R(E),
and ϕ∗1, · · · , ϕ∗m be the dual basis for R(E∗). Then there is a constant c, such that

| µ− µj,h | ≤ c{
m∑

i,k=1

|< (T − Th)ϕi, ϕ
∗
k >|

+ ‖(T − Th) |R(E) ‖‖(T ∗ − T ∗h ) |R(E∗) ‖}
1
α(5)

(j = 1, 2, · · · ,m).

Lemma 4. Let µh be an eigenvalue of Th such that lim
h→0

µh = µ. Suppose for each

h, uh is a unit vector satisfying (µh − Th)kuh = 0 for some positive integer k ≤ α.
Then for any integer j with k ≤ j ≤ α, we have

(6) ‖uh − Pjuh‖ ≤ c · ‖(Th − T ) |R(E) ‖
j−k+1

α ,

where Pj is the projection on N((µ − T )j) along Mj . Mj is a closed subspace of
X, such that X = N((µ− T )j)⊕Mj.

These Lemmas provide a foundation of the spectral approximate theory for com-
pletely continuous operators. We can establish a prior error estimates of finite
element solution for differential operators and integral operators by using these
Lemmas. However, we shall note that (5) and (6) depend on the ascent α of
T − µ, which is very difficult to determine for non-self adjoint eigenvalue prob-
lems. Furthermore, the value of the constant c is unknown in (5) and (6). So, it is
inconvenient to obtain a posteriori error estimates.

Since Babuška and Rheinboldt published the first paper on a posteriori error
estimates of finite element methods [2], many developments have been made in
this subject. In [6], an abstract error estimate has been presented, which gives a
posteriori error estimates to finite element approximations for self-adjoint compact
operator eigenvalue problems. In the cuurent paper, we will present an abstract


