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Abstract. The striking simplicity of averaging techniques in a posteriori er-

ror control of finite element methods as well as their amazing accuracy in

many numerical examples over the last decade have made them an extremely

popular tool in scientific computing. Given a discrete stress or flux ph and

a post-processed approximation A(ph), the a posteriori error estimator reads

ηA := ‖ph −A(ph)‖. There is not even a need for an equation to compute the

estimator ηA and hence averaging techniques are employed everywhere. The

most prominent example is occasionally named after Zienkiewicz and Zhu, and

also called gradient recovery but preferably called averaging technique in the

literature.

The first mathematical justification of the error estimator ηA as a computable

approximation of the (unknown) error ‖p− ph‖ involved the concept of super-

convergence points. For highly structured meshes and a very smooth exact

solution p, the error ‖p−A(ph)‖ of the post-processed approximation Aph may

be (much) smaller than ‖p − ph‖ of the given ph. Under the assumption that

‖p−A(ph)‖ = h.o.t. is in relative terms sufficiently small, the triangle inequal-

ity immediately verifies reliability, i.e.,

‖p− ph‖ ≤ Crel ηA + h.o.t.,

and efficiency, i.e.,

ηA ≤ Ceff ‖p− ph‖+ h.o.t.,

of the averaging error estimator ηA. However, the required assumptions on the

symmetry of the mesh and the smoothness of the solution essentially contradict

the use of adaptive grid refining when p is singular and the proper treatment

of boundary conditions remains unclear.

This paper aims at an actual overview on the reliability and efficiency of

averaging a posteriori error control for unstructured grids. New aspects are

new proofs of the efficiency of all averaging techniques and for all problems.
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1. Overview

The outcome of a first-order finite element method (FEM) is a globally contin-
uous and piecewise polynomial function uh. The corresponding flux or stress ph is
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usually a linear operator C evaluated for the gradient Duh (or its symmetric part)
of the finite element function uh,

ph := CDuh ∈ P0(T ;M).

Here and throughout, T is a triangulation of the computational domain Ω, M is
a space of vectors or matrices, and Pk(T ;M) denotes the piecewise polynomials of
degree ≤ k [piecewise with respect to T and with values in M].

Typical examples are elliptic partial differential equations of second order in Ω,
namely,

− div CDu = f in Ω,

for the Poisson or Lamé equations, which give rise to a weak formulation

a(u, v) = b(v) for all v ∈ V.

Here and throughout, a is a bounded bilinear form on the Hilbert space V (or on
some larger space) and b is a bounded linear functional on V , written b ∈ V ∗.

For the ease of this overview, the presentation is restricted to homogeneous
Dirichlet conditions on the entire boundary. Then, the flux or stress p := CDu sat-
isfies no prescribed boundary conditions and can be approximated by some globally
continuous and piecewise polynomial functions which form a discrete space

Qh := P1(T ;M) ∩ C0(Ω;M).

Given ph, the norm ‖ · ‖, and the discrete space Qh, the minimal averaging a pos-
teriori error estimator ηM reads

ηM := min
qh∈Qh

‖ph − qh‖.
The computation of ηM involves a global minimization which can be solved by an
iterative scheme which is not too costly in many applications when a (weighted)
L2 projection is involved. However, local versions appear as accurate as ηM which
involves a postprocessing defined by an operator

A : Q → Qh for Q := {CDv : v ∈ V } ⊂ L := L2(Ω;M).

Then the A averaging a posteriori error estimator ηA reads

ηA := ‖ph −A(ph)‖.
One particular important example is the ZZ estimator [24]

ηZ := ‖ph − Z(ph)‖ ≈ ηE ,

which is equivalent to the jumps across interior element edges ηE (for conforming P1

FEM). Details on the notation follow in Section 2. It is obvious that ηM ≤ ηA. The
surprising converse of which will be shown below for a class of averaging operators.
In fact, Section 2 establishes

ηA ≈ ηM ≈ ηZ ≈ ηE .

Here and throughout, the statement a . b abbreviates a ≤ C b for some positive
generic constant C which does not depend on the meshsize in T , and a . b . a is
abbreviated by a ≈ b.

This paper discusses examples of problems and estimators and studies their
reliability, i.e.,

‖p− ph‖ . ηM + h.o.t.,
(recall that h.o.t. abbreviates higher-oder terms, the meaning of which is clarified
below) and their efficiency, i.e.,

ηM . ‖p− ph‖+ h.o.t.


