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WAVEFORM RELAXATION METHODS
FOR STOCHASTIC DIFFERENTIAL EQUATIONS
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Abstract. Lp-convergence of waveform relaxation methods (WRMs) for nu-

merical solving of systems of ordinary stochastic differential equations (SDEs)

is studied. For this purpose, we convert the problem to an operator equation

X = >>X + G in a Banach space E of Ft-adapted random elements describing

the initial- or boundary value problem related to SDEs with weakly coupled,

Lipschitz-continuous subsystems. The main convergence result of WRMs for

SDEs depends on the spectral radius of a matrix associated to a decomposition

of >>. A generalization to one-sided Lipschitz continuous coefficients and a

discussion on the example of singularly perturbed SDEs complete this paper.
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1. Introduction

The solution of complex and large scale systems plays a crucial role in recent
scientific computations. In particular, large scale stochastic dynamical systems
represent very complex systems incorporating the random appearances of physi-
cal processes in nature. The development of efficient numerical methods to study
such large scale systems, which can be characterized as weakly coupled subsystems
with quite different behavior, is an important challenge. Under some conditions,
block-iterative methods are very efficient. One of these methods to solve large scale
systems is given by the waveform relaxation method. This method was first pro-
posed by Lelarasmee, Ruehli and Sangiovanni–Vincentelli [27] for the time-domain
analysis of large scale integrated circuits. For the waveform algorithm concerning
deterministic processes and related aspects, many research papers can be found, e.g.
Bremer and Schneider [4], Bremer [5], Burrage [6], in’t Hout [12], Jackiewicz and
Kwapisz [16], Jansen et al. [17], Jansen and Vandewalle [18], Leimkuhler [25, 26],
Miekkala and Nevanlinna [30], Nevanlinna and Odeh [32], Sand and Burrage [36],
Schneider [37, 38, 39], Ta’asan and Zhang [44], Zennaro [48], Zubik–Koval and
Vandewalle [50], among many others.

In what follows we present a theoretical foundation for the construction and
convergence of waveform iterations applied to systems of ordinary stochastic differ-
ential equations (SDEs) which are decomposable into weakly coupled subsystems.
The attention is restricted to Itô-interpreted SDEs and Lp-solutions (i.e. strong
solutions in the Banach space of Lp(Ω,F , IP)-integrable random processes). For
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original works on stochastic integration, see Itô [13, 14, 15]. For basic aspects on
the theory of SDEs in the spirit of Itô [13], see e.g. Arnold [1, 2], Dynkin [8], Gard
[10], Khas’minskij [19], Krylov [22], Mao [28], Protter [34] and Revuz and Yor [35].

We see our main contribution in deriving precise bounds for the Lipschitz-
constants of the related stochastic integral operator and in describing their influence
on the Lp-convergence of waveform iteration methods depending on the splitting
into subsystems. However, a qualitative comparison with other numerical tech-
niques for stochastic differential equations (SDEs) is left to the interested reader.

The paper is organized as follows. In Section 2 we describe the key idea of wave-
form relaxation method. Section 3 presents a proof for the existence and uniqueness
of an initial value problem for Itô-type stochastic differential equations (SDEs) using
fixed point techniques on appropriate Banach spaces in order to derive conditions
for the Lp-convergence of waveform relaxation methods with p ≥ 2. Section 4
generalizes this idea to the case of one-sided Lipschitz-continuity of the drift part,
restricted to drift coefficients satisfying an angle condition. An illustrative example
is given in Section 5. Section 6 closes this paper with some concluding remarks.

2. The general idea of waveform relaxation methods

At first we convert the initial-value problem problem related to Itô-interpreted
stochastic differential equations into a fixed point problem. Therefore, we can
consider

(1) x = >>x + g

where >> maps the function space U into itself, and g ∈ U . There are several
techniques to find appropriate conditions on the operator >> guaranteeing a unique
solution x∗ ∈ U of system (1) and resulting in an efficient algorithm to approximate
x∗. In the case that (1) represents a network of weakly connected subsystems with
quite different behavior, i.e. (1) carries the feature of a large scale system, the
waveform relaxation method is an efficient approach to approximate x∗, formulated
as follows:

(i) Decomposition step: Find a suitable representation of the space U as a
product of subspaces U1,U2, ...,Un, i.e.

(2) U = U1 × U2 × ...× Un ,

and a corresponding splitting of >> into >>1, ... , >>n and g into g1, ..., gn

such that the fixed point problem (1) is equivalent to the system

x(1) = >>1(x(1), ..., x(n)) + g1,

x(2) = >>2(x(1), ..., x(n)) + g2,

....... .. .................................(3)

x(n) = >>n(x(1), ..., x(n)) + gn

where x(k), gk ∈ Uk, and >>k maps U into the subspace Uk for k = 1, 2, ..., n.
(ii) Solution step: By an appropriate procedure, solve the k-th subsystem

(4) x(k) = >>k(x(1), ..., x(k−1), x(k), x(k+1), ..., x(n)) + gk .

Here, x(j), j = 1, 2, ..., n with j 6= k are the inputs from other subsystems.
(iii) Relaxation step: Derive conditions such that the successive solution of sub-

systems (4) leads to the unique solution of the large scale system (of SDEs,
specified later)


