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Abstract. This paper deals with discrete monotone iterative algorithms for

solving a nonlinear singularly perturbed parabolic problem. A block monotone

domain decomposition algorithm based on a Schwarz alternating method and

on a block iterative scheme is constructed. This monotone algorithm solves

only linear discrete systems at each time level and converges monotonically

to the exact solution of the nonlinear problem. The rate of convergence of

the block monotone domain decomposition algorithm is estimated. Numerical

experiments are presented.
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1. Introduction

We are interested in monotone Schwarz alternating algorithms for solving the
nonlinear reaction-diffusion problem

(1) −µ2 (uxx + uyy) + ut = −f(P, t, u),

P = (x, y), (P, t) ∈ Q = Ω× (0, T ], Ω = {0 < x < 1, 0 < y < 1} ,

fu(P, t, u) ≥ 0, (P, t, u) ∈ Q× (−∞,∞), (fu ≡ ∂f/∂u),
where µ is a small positive parameter. The initial-boundary conditions are defined
by

u(P, t) = g(P, t), (P, t) ∈ ∂Ω× (0, T ], u(P, 0) = u0(P ), P ∈ Ω,

where ∂Ω is the boundary of Ω. The functions f(P, t, u), g(P, t) and u0(P ) are
sufficiently smooth. Under suitable continuity and compatibility conditions on the
data, a unique solution u(P, t) of (1) exists (see [6] for details). For µ ¿ 1, prob-
lem (1) is singularly perturbed and characterized by the boundary layers of width
O(µ| ln µ|) at the boundary ∂Ω (see [1] for details).

In the study of numerical solutions of nonlinear singularly perturbed problems
by the finite difference method, the corresponding discrete problem is usually for-
mulated as a system of nonlinear algebraic equations. A major point about this
system is to obtain reliable and efficient computational algorithms for computing
the solution. In the case of the parabolic problem (1), the implicit method is usu-
ally in use. On each time level, this method leads to a nonlinear system which
requires some kind of iterative scheme for the computation of numerical solutions.
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A fruitful method for the treatment of these nonlinear systems is the method of
upper and lower solutions and its associated monotone iterations (in the case of
”unperturbed” problems see [8], [9] and references therein). Since the initial itera-
tion in the monotone iterative method is either an upper or a lower solution, which
can be constructed directly from the difference equation without any knowledge of
the exact solution (see [2] for details), this method eliminates the search for the
initial iteration as is often needed in Newton’s method. This elimination gives a
practical advantage in the computation of numerical solutions.

In [3], we proposed a discrete iterative algorithm which combines the monotone
approach and the iterative domain decomposition method based on the Schwarz
alternating procedure. In the case of small values of the perturbation parameter
µ, the convergence factor ρ̃ of the monotone domain decomposition algorithm is
estimated by

ρ̃ = ρ +O(τ),
where ρ is the convergence factor of the monotone (undecomposed) method and τ
is the step size in the t-direction.

The purpose of this paper is to extend the monotone domain decomposition
algorithm from [3] in a such way that computation of the discrete linear subsystems
on subdomains which are located outside the boundary layers is implemented by
the block iterative scheme (see [12] for details of the block iterative scheme). A
basic advantage of the block iterative scheme is that the Thomas algorithm can be
used for each linear subsystem defined on these subdomains in the same manner as
for one-dimensional problems, and the scheme is stable and is suitable for parallel
computing.

For solving nonlinear discrete elliptic problems without domain decomposition,
the block monotone iterative methods were constructed and studied in [10]. In [10],
the convergence analysis does not contain any estimates on a convergence rate of
the proposed iterative methods, and the numerical experiments show that these
algorithms applied to some model problems converge very slowly. In contrast, a
numerical algorithm based on a combination of the domain decomposition approach
and the block iterative method applied on subdomains outside the boundary layers
converges more quickly than the original block iterative method.

The structure of the paper is as follows. In Section 2, we consider a monotone
iterative method for solving the implicit difference scheme which approximates the
nonlinear problem (1). In Section 3, we construct and investigate a block monotone
domain decomposition algorithm. The rate of convergence of the block monotone
domain decomposition algorithm is estimated in Section 4. The final Section 5
presents results of numerical experiments for the proposed algorithm.

2. Monotone iterative method

On Q introduce a rectangular mesh Ω
h × Ω

τ
, Ω

h
= Ω

hx × Ω
hy

:

Ω
hx

= {xi, 0 ≤ i ≤ Nx; x0 = 0, xNx = 1; hxi = xi+1 − xi} ,

Ω
hy

=
{
yj , 0 ≤ j ≤ Ny; y0 = 0, yNy = 1; hyj = yj+1 − yj

}
,

Ω
τ

= {tk = kτ, 0 ≤ k ≤ Nτ , Nτ τ = T} .

For a mesh function U(P, t), we use the implicit difference scheme

(2) LhU(P, t) +
1
τ

[U(P, t)− U(P, t− τ)] = −f(P, t, U), (P, t) ∈ Ωh × Ωτ ,

U(P, t) = g(P, t), (P, t) ∈ ∂Ωh × Ωτ , U(P, 0) = u0(P ), P ∈ Ω
h
,


