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CONVERGENCE AND STABILITY OF IMPLICIT METHODS
FOR JUMP-DIFFUSION SYSTEMS

DESMOND J. HIGHAM AND PETER E. KLOEDEN

Abstract. A class of implicit methods is introduced for Ito stochastic differ-

ential equations with Poisson-driven jumps. A convergence proof shows that

these implicit methods share the same finite time strong convergence rate as

the explicit Euler–Maruyama scheme. A mean-square linear stability analysis

shows that implicitness offers benefits, and a natural analogue of mean-square

A-stability is studied. Weak variants are also considered and their stability

analyzed.
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1. Introduction

Applications in economics, finance, and several areas of science and engineering,
give rise to jump-diffusion Ito stochastic differential equations [2, 4, 24] of the form

(1) dX(t) = f(X(t−))dt + g(X(t−))dW (t) + h(X(t−))dN(t), t > 0,

with X(0) given, where X(t−) denotes lims→t− X(s). Here, f : Rn → Rn is the drift
coefficient, g : Rn → Rn×m is the diffusion coefficient and W (t) is an m-dimensional
Brownian motion. We assume that N(t) is a scalar Poisson process with intensity
λ, and hence the jump coefficient has the form h : Rn → Rn. Extension of our work
to vector-valued jumps with independent entries is straightforward. Conditions on
the coefficients and initial data that guarantee a unique solution will be introduced
in section 2.

We consider a class of theta methods for (1). For a constant stepsize ∆t > 0 and
a particular choice of θ ∈ [0, 1], the theta method is defined by Y0 = X(0) and

(2) Yn+1 = Yn + (1− θ)f(Yn)∆t + θf(Yn+1)∆t + g(Yn)∆Wn + h(Yn)∆Nn.

Here, Yn is the approximation to X(tn), for tn = n∆t, with ∆Wn := W (tn+1) −
W (tn) and ∆Nn := N(tn+1) − N(tn) denoting the increments of the Brownian
motion and the Poisson process, respectively.

We refer to (2) as a class of theta methods because in the deterministic ordinary
differential equation (ODE) case, where g(·) ≡ h(·) ≡ 0 and X(0) is constant,
(2) reduces to the well-known class with this name. For Ito stochastic differential
equations (SDEs), where h(·) ≡ 0, the class has been referred to as the semi-
implicit Euler method [11, 23] and the stochastic theta method [9]. Our motivation
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for introducing and studying (2) is that for the ODE and SDE cases, it has been
found that the class offers good linear stability properties [8, 9, 23] and excellent
potential for capturing long time dynamics [20, 25]. Our aim here is to show
that the theta method offers a means to define useful implicit integrators in the
presence of jumps. Section 2 justifies the methodology by giving a finite time
strong convergence proof. Section 3 analyzes mean-square stability and quantifies
precisely what may be gained by moving away from the Euler–Maruyama (θ = 0)
case. Stability for a weak version of the theta method is studied in section 4.

Previous work on numerical methods for jump-diffusion problems includes [3,
6, 7, 12, 14, 15, 16, 17, 21, 22]. The references [6, 7, 12, 14, 21, 22] deal with
weak convergence. In [6, 7, 12, 21] ‘jump-adapted’ explicit methods that directly
incorporate the jump points are studied, whereas [14, 22] use a fixed ∆t. Glasserman
[5, page 364] points out that jump-adaption may be expensive when the jump
intensity λ is large. Strong convergence for fixed stepsize explicit methods is studied
in [3, 15, 16, 17]. Our work differs from these references in that (a) implicit methods
are considered, and (b) in addition to finite time strong convergence, mean-square
stability properties are analyzed.

2. Strong Convergence Proof

In this section we suppose that the problem (1) is to be solved over a finite time
interval, [0, T ], where T is a constant. We study classical strong convergence, and
hence we are concerned with the regime where ∆t → 0 with T fixed. The reference
[1] mentions a number of applications where this type of convergence is required,
the most relevant for our work being mathematical finance. The initial steps of
the proof follow the ideas in [10, Appendix A], where a strong convergence result
for the theta method on a non-jump SDE is given. Our proof is more general in
that it deals with the jump term and also places the supremum over time inside
the expectation operator (see Theorem 2.4 below).

Letting | · | denote both the Euclidean vector norm and the Frobenius matrix
norm, we assume that f, g, h satisfy the global Lipschitz condition:

(3) |a(x)− a(y)|2 ≤ K|x− y|2, for a ≡ f, g, or h,

where K is a constant independent of x and y, and we note that this implies the
linear growth bound

(4) |a(x)|2 ≤ L(1 + |x|2), for a ≡ f, g, or h,

where L is a constant independent of x and y. Our assumption on the initial data
is that E|X(0)|2 is finite and X(0) is independent of W (t) and N(t) for all t ≥ 0.
We note that these conditions imply the existence of a unique solution for (1), see,
for example, [4, 24].

For convenience, we will extend the discrete numerical solution to continuous
time. We first define the ‘step functions’

(5) Z1(t) =
∑

k

Yk1[k∆t,(k+1)∆t)(t), Z2(t) =
∑

k

Yk+11[k∆t,(k+1)∆t)(t),

where 1G is the indicator function for the set G. Then we define

Y (t) = Y0 +
∫ t

0

(1− θ)f(Z1(s)) ds +
∫ t

0

θf(Z2(s)) ds +
∫ t

0

g(Z1(s)) dW (s)

+
∫ t

0

h(Z1(s)) dN(s).(6)


